B-tree与B+tree区别与使用

B 树是为了磁盘或其它存储设备而设计的一种多叉平衡查找树。
B 树又叫平衡多路查找树。
一棵m阶的B 树 (m叉树)的特性如下:
(1)所有键值分布在整个树中
(2)任何关键字出现且只出现在一个节点中
(3)搜索有可能在非叶子节点结束
(4)在关键字全集内做一次查找,性能逼近二分查找算法
更具体的特征:
一棵m阶的B 树 (m叉树)的特性如下:

  1. 树中每个结点最多含有m个孩子(m>=2);

  2. 除根结点和叶子结点外,其它每个结点至少有[ceil(m / 2)]个孩子(其中ceil(x)是一个取上限的函数);

  3. 若根结点不是叶子结点,则至少有2个孩子(特殊情况:没有孩子的根结点,即根结点为叶子结点,整棵树只有一个根节点);

  4. 所有叶子结点都出现在同一层,叶子结点不包含任何关键字信息(可以看做是外部接点或查询失败的接点,实际上这些结点不存在,指向这些结点的指针都为null);

  5. 每个非终端结点中包含有n个关键字信息: (P1,K1,P2,K2,P3,…,Kn,Pn+1)。其中:
    a) Ki (i=1…n)为关键字,且关键字按顺序升序排序K(i-1)< Ki。
    b) Pi为指向子树根的接点,且指针P(i)指向子树种所有结点的关键字均小于Ki,但都大于K(i-1)。
    c) 关键字的个数n必须满足: [ceil(m / 2)-1]<= n <= m-1。

    示意图如下:
    在这里插入图片描述
    一颗m阶的B+树和m阶的B_树的差异在于:

1.有n棵子树的结点中含有n个关键字; (而B树是n棵子树有n-1个关键字)

2.所有的叶子结点中包含了全部关键字的信息,及指向含有这些关键字记录的指针,且叶子结点本身依关键字的大小自小而大的顺序链接。(而B树的叶子节点并没有包括全部需要查找的信息)

3.所有的非终端结点可以看成是索引部分,结点中仅含有其子树根结点中最大(或最小)关键字。 (而B 树的非终节点也包含需要查找的有效信息)

B+树示意图如下:
在这里插入图片描述

B+的优点:
1) B±tree的磁盘读写代价更低

B±tree的内部结点并没有指向关键字具体信息的指针。因此其内部结点相对B 树更小。如果把所有同一内部结点的关键字存放在同一盘块中,那么盘块所能容纳的关键字数量也越多。一次性读入内存中的需要查找的关键字也就越多。相对来说IO读写次数也就降低了。

举个例子,假设磁盘中的一个盘块容纳16bytes,而一个关键字2bytes,一个关键字具体信息指针2bytes。一棵9阶B-tree(一个结点最多8个关键字)的内部结点需要2个盘快。而B+ 树内部结点只需要1个盘快。当需要把内部结点读入内存中的时候,B 树就比B+ 树多一次盘块查找时间(在磁盘中就是盘片旋转的时间)。

2) B±tree的查询效率更加稳定

由于非终结点并不是最终指向文件内容的结点,而只是叶子结点中关键字的索引。所以任何关键字的查找必须走一条从根结点到叶子结点的路。所有关键字查询的路径长度相同,导致每一个数据的查询效率相当。

为什么用B/B+树这种结构来实现索引呢

红黑树等结构也可以用来实现索引,但是文件系统及数据库系统普遍使用B/B+树结构来实现索引。mysql是基于磁盘的数据库,索引是以索引文件的形式存在于磁盘中的,索引的查找过程就会涉及到磁盘IO(为什么涉及到磁盘IO请看文章后面的附加理解部分)消耗,磁盘IO的消耗相比较于内存IO的消耗要高好几个数量级,所以索引的组织结构要设计得在查找关键字时要尽量减少磁盘IO的次数。为什么要使用B/B+树,跟磁盘的存储原理有关。
局部性原理与磁盘预读
为了提升效率,要尽量减少磁盘IO的次数。实际过程中,磁盘并不是每次严格按需读取,而是每次都会预读。磁盘读取完需要的数据后,会按顺序再多读一部分数据到内存中,这样做的理论依据是计算机科学中注明的局部性原理:

当一个数据被用到时,其附近的数据也通常会马上被使用
程序运行期间所需要的数据通常比较集中

1)由于磁盘顺序读取的效率很高(不需要寻道时间,只需很少的旋转时间),
因此对于具有局部性的程序来说,预读可以提高I/O效率.预读的长度一般为页(page)的整倍数。
(2)MySQL(默认使用InnoDB引擎),将记录按照页的方式进行管理,每页大小默认为16K(这个值可以修改)。linux 默认页大小为4K。

B-Tree借助计算机磁盘预读的机制,并使用如下技巧:
每次新建节点时,直接申请一个页的空间,这样就保证一个节点物理上也存储在一个页里,加之计算机存储分配都是按页对齐的,就实现了一个结点只需一次I/O。
假设 B-Tree 的高度为 h,B-Tree中一次检索最多需要h-1次I/O(根节点常驻内存),渐进复杂度为O(h)=O(logdN)O(h)=O(logdN)。一般实际应用中,出度d是非常大的数字,通常超过100,因此h非常小(通常不超过3,也即索引的B+树层次一般不超过三层,所以查找效率很高)。
而红黑树这种结构,h明显要深的多。由于逻辑上很近的节点(父子)物理上可能很远,无法利用局部性,所以红黑树的I/O渐进复杂度也为O(h),效率明显比B-Tree差很多。

为什么mysql的索引使用B+树而不是B树呢??
(1)B+树更适合外部存储(一般指磁盘存储),由于内节点(非叶子节点)不存储data,所以一个节点可以存储更多的内节点,每个节点能索引的范围更大更精确。也就是说使用B+树单次磁盘IO的信息量相比较B树更大,IO效率更高。
(2)mysql是关系型数据库,经常会按照区间来访问某个索引列,B+树的叶子节点间按顺序建立了链指针,加强了区间访问性,所以B+树对索引列上的区间范围查询很友好。而B树每个节点的key和data在一起,无法进行区间查找。

———————————————————————————————
参考:
以B tree和B+ tree的区别来分析mysql索引实现
B树与B+tree祥解

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值