一、介绍
商品推荐是针对用户面对海量的商品信息而不知从何下手的一种解决方案,它可以根据用户的喜好,年龄,点击量,购买量以及各种购买行为来为用户推荐合适的商品。在本项目中采用的是基于用户的协同过滤的推荐算法来实现商品的推荐并在前台页面进行展示,我将会使用余弦相似度的度量方法来计算用户与用户之间相似性,最终将相似度较高的用户浏览的商品推荐给用户。
二、目标
商品推荐:根据不同用户之间的相似性来推荐给用户合适的商品
一级类目管理:管理一级类目的相关功能
二级类目管理:管理二级类目的相关功能
商品管理:对商品进行上架,下架,修改信息
管理员管理:管理管理员,用于商城后台的管理平台页面
商城会员管理:管理商城会员,对商城页面的会员进行管理
商城会员登录及注册:实现商城用户的登录功能以及注册
springMVC-4.2.1表示层框架,负责匹配请求,处理请求,返回视图
mybatis-3.3.1建立与数据库的会话
druid-1.1.16为监控而生的数据库
用户相似度计算功能
其中的x和y是两个不同的维度,在向量直角坐标系中可以认为是距x和y轴的距离,但是在实际的应用中,可以是把它理解为一个物体的任何一个可以衡量它与其他物体不同之处的属性…咳咳,还是说人话吧,在商品推荐中可以把向量 a 和向量 b 理解为两个不同的用户,把 (x1,y1) 理解为 a 用户对 x 商品的点击次数和对 y 商品的点击次数,再把对应的值带入上述公式即可求出两个用户之间的相似性,越接近于 1 ,说明两个用户的浏览行为越相似,就可以把一个用户浏览过的商品推荐给另一个没有浏览过该商品的用户,从而完成商品推荐。