如何学习BI大数据

职业规划建议

1. 短期目标(1-2年)

积累经验:通过实习或初级岗位(如数据分析师、商业分析师)积累经验。

提升技能:深入学习SQL、Python、BI工具,掌握数据分析和可视化技能。

建立作品集:完成个人项目或参与开源项目,展示数据分析能力。

2. 中期目标(3-5年)

专业化发展:根据兴趣选择细分方向,如数据可视化、BI开发或数据运营。

提升软技能:加强沟通、项目管理能力,提升商业敏感度。

行业深耕:选择感兴趣的行业(如金融、电商、医疗),成为行业专家。

3. 长期目标(5年以上)

管理岗位:向数据团队负责人、数据产品总监等管理岗位发展。

技术专家:成为数据科学家、BI架构师等技术专家。

创业或咨询:积累足够经验后,可考虑创业或从事数据咨询工作

学习内容

1.基础知识

BI和大数据的基本概念、应用场景及其在商业中的作用。

数据分析、数据挖掘、数据可视化等基础知识。

2.工具

Excel:掌握基本的数据处理和分析功能,如公式、图表和数据透视表。

SQL:学习数据库查询语言,掌握数据提取和操作

BI工具:熟悉常见的BI工具,如Tableau、Power BI,学习数据可视化和报表制作。

编程语言:初步学习Python或R,掌握基本的数据处理和分析技能。

3.数据分析方法

统计学基础:学习描述性统计、概率等基本统计知识。

数据分析流程:了解数据清洗、探索性分析、建模和结果解释的完整流程。

4.实践项目

案例学习:通过实际案例理解BI和大数据的应用。

个人项目:从公开数据集中选择项目,进行数据分析和可视化。

5.证书加持

考取相关证书(如Tableau认证、微软Power BI认证、数据分析师证书)。

学习路径

初级阶段

学习Excel和SQL,掌握基本数据处理技能。

完成Kaggle上的入门项目(如Titanic生存预测)。

阅读《数据可视化实战》,学习如何用数据讲故事。

中级阶段

学习Python基础,掌握Pandas、Matplotlib等库。

分析政府开放数据或Kaggle上的社会问题数据集。

完成Tableau或Power BI的数据可视化项目。

高级阶段

学习统计学基础,掌握描述性统计和概率。

完成复杂的数据分析项目(如电商用户行为分析)。

结合文科背景,发表数据分析文章或报告。

 推荐工具和资源

学习平台

Coursera、edX:提供系统化的数据分析课程。

DataCamp:专注于数据分析的交互式学习。

书籍

《深入浅出数据分析》:适合初学者的数据分析入门书。

《用数据讲故事》:学习如何用数据可视化传达信息。

社区

Kaggle社区:参与讨论和比赛,学习他人经验。

知乎、豆瓣:关注数据分析相关话题和小组。

数据集平台

 综合数据集平台

Google Dataset Searchhttps://datasetsearch.research.google.com/):Google推出的数据集搜索引擎,涵盖各个领域的数据。

Data.worldhttps://data.world/):一个开放的数据社区,提供多种数据集和分析项目。

UCI Machine Learning Repositoryhttps://archive.ics.uci.edu/ml/index.php):加州大学欧文分校维护的经典数据集,适合机器学习和数据分析练习。

    2. 政府开放数据

    中国政府开放数据https://data.stats.gov.cn/):中国国家统计局的开放数据平台,涵盖经济、人口、环境等领域。

    美国Data.govhttps://www.data.gov/):美国政府开放数据平台,涵盖教育、医疗、交通等领域。

    欧盟开放数据门户https://data.europa.eu/):欧盟的开放数据平台,涵盖经济、环境、社会等领域。

    评论
    添加红包

    请填写红包祝福语或标题

    红包个数最小为10个

    红包金额最低5元

    当前余额3.43前往充值 >
    需支付:10.00
    成就一亿技术人!
    领取后你会自动成为博主和红包主的粉丝 规则
    hope_wisdom
    发出的红包
    实付
    使用余额支付
    点击重新获取
    扫码支付
    钱包余额 0

    抵扣说明:

    1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
    2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

    余额充值