插入排序

插入排序

插入排序的基本原则是,将一个待排序的元素,按照排序规则,插入到前面已经排好序的一组元素的适当位置,直到元素全部插入为止。根据寻找插入位置的不同方式,可将插入排序分为直接插入排序折半插入排序,还有一种对直接插入排序的优化方案希尔排序

直接插入排序

直接插入排序的是,将一组待排序的元素第一个元素看做是有序的,然后从第二个元素开始,将他插入到前面排好序的一组元素的合适的位置。结合下面 的一组数据说吧

第一步:从元素8开始,往前查找,发现8比34小,则将8插入到34前面

第二步:从元素64开始,往前查找,发现没有比64小的元素,则64不动

第三步:从元素51开始,往前查找,发现没有比64小的元素,则64不动

。。。依次类推
在这里插入图片描述
代码实现

/**
 * 插入排序
 *
 * @Author HXY
 * @Date 2020/2/25
 */
public class InsertionSort {
    public static void sort(int[] arr) {
        int j = 0;
        for (int i = 1; i < arr.length; i++) {
            int tmp = arr[i];
            for (j = i; j > 0 && tmp < arr[j - 1]; j--) {
                arr[j] = arr[j - 1];
            }
            arr[j] = tmp;
        }
    }
}

直接插入排序算法在最好的情况下,也就是这组数据已经排好序的情况下,内层for循环的条件每次判定失败,只执行外层的fort循环,时间复杂度可以看做O(N)。而在最坏情况下,也就是一组要从小到大排序的数据,初始化恰恰是从大到小排序的,这个时候时间复杂度是O(N2),一般情形下也是O(N2)。

折半插入排序

折半插入排序就是在直接插入排序的寻找插入点这个步骤进行了优化,将原来的遍历优化成折半查找。代码如下:

public static void sort(int[] arr) {
    int j = 0;
    for (int i = 1; i < arr.length; i++) {
        int low = 0, high = i - 1, mid = 0;
        int tmp = arr[i];
        // 寻找插入点
        while (low <= high) {
            mid = (low + high) / 2;
            if (arr[i] < arr[mid]) {
                high = mid - 1;
            } else {
                low = mid + 1;
            }
        }
        // 将插入点后的元素统一后移,然后将元素插入插入点
        for (j = i; j > high + 1; j--) {
            arr[j] = arr[j - 1];
        }
        arr[high + 1] = tmp;
    }
}

当数据较多时,折半插入排序平均性能优于直接插入排序,但是比直接插入排序的最好情况是要差的。因此当初始化序列接近有序时,用直接插入排序性能更好。这两个都是稳定的排序方式

希尔排序

结合上面的讨论我们得知,当数据量相对较小或者序列基本有序时,插入排序的效率是比较高的。因此希尔大佬在这两个点上对插入排序进行了优化,发明了希尔排序。希尔排序的主要思想就是

  1. 将一个大的序列通过一个整数gap(增量)拆分成几组数据量小的子序列,先对这一个个子序列进行插入排序
  2. 经过上面这一步后,这个大的序列基本有序了,这个时候在执行一遍插入排序

具体的过程参见下图
在这里插入图片描述
我们采取gap=3这个增量将初始化序列在逻辑上分为三个子序列,然后对这三个子序列进行插入排序,这一步后这个序列基本有序,我们在控制gap=1,这时候就相当于对这个大的序列进行一次插入排序。

代码如下:

// 希尔排序
public static void shellSort(int[] arr) {
    int j = 0;
    // 1. 分组
    for (int gap = arr.length / 2; gap > 0; gap /= 2) {
        // 2. 相当于遍历分出来的几个组
        for (int i = gap; i < arr.length; i++) {
            int tmp = arr[i];
            // 对组内的元素排序
            for (j = i; j >= gap && tmp < arr[j - gap]; j -= gap) {
                arr[j] = arr[j - gap];
            }
            arr[j] = tmp;
        }
    }
}

希尔排序的时间复杂度与这个增量的取用关系较大,至今无人能对一般情形下的时间复杂度给出证明,我这种菜鸟就暂不研究了。另外这是一种不稳定的排序方式。

Github源码

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

半__夏

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值