自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(29)
  • 收藏
  • 关注

原创 实时数据可视化:使用 Flask, Socket.IO 和 Chart.js 创建动态更新的图表

socket.on('new_number', function(msg) { ... }): 定义一个事件监听器,当从服务器接收到 new_number 事件时触发。var myChart = new Chart(ctx, { ... }): 使用 ctx 和 data 创建一个新的图表实例。labels: 一个空数组,将用于存储X轴上的标签。data: 一个空数组,将用于存储Y轴上的数据点。

2023-10-10 17:37:21 623

原创 解析 神经网络中的 计算加权输入

计算输入数据self.X 和self.weights 的点积,矩阵乘法的结果, 得到加权的输入: z_a。举个例子, 整个神经网络就是一个菜谱, 而每个神经元又是烹饪过程的一个步骤。通过加权输入, 神经网络能自动学习输入数据的特征,并转化为更有意义的表示。具体来说, 在每个神经元中, 输入数据和对应的权重进行线性组合 即。中的一项计算, 他会对输入的数据进行处理 ,并将结果传递给下一层。这个 计算加权输入在神经网络中处于一个什么样的位置呢?主要作用是将输入数据和权重进行线性组合, 并。

2023-05-10 09:14:34 413

原创 加载cifar10和cifar100数据集

使用函数 ‘tf.keras.datasets.cifar10.load_data()’ 函数加载cifar10的训练(样本、标签) 测试(样本、标签),同理 cifar100。使用np.concatenate 拼接两个训练数据集, train_10 和train_100 , axis=0就是垂直方向拼接 ,对每个像素执行归一化, 将每个像素/255 , 缩放到【0,1】同理, 对标签进行合并。

2023-05-09 15:48:41 520

原创 SGD优化算法的更新步骤

使用梯度下降更新公式来更新参数的值:就像你需要不断地调整车座的高度和方向盘的位置一样,优化算法需要使用梯度下降的公式来更新神经网络中的参数。. .将参数的梯度清零:就像你不希望之前的车座高度和方向盘位置影响到当前的调整一样,优化算法需要在更新完参数之后将其梯度清零,以便下一次计算梯度不受之前的影响。遍历 params 中的所有参数:就像你需要调整自行车的各个部分一样,优化算法需要遍历神经网络中的所有参数,以便调整它们的值。上下文管理器来避免记录更新操作的计算图和梯度信息,以减少内存消耗和提高代码效率。

2023-05-08 14:37:50 507 2

原创 日攻一卒 --- batch_size 和 准确率的关系

为了找到适合您问题的最佳批量大小,您可以尝试这些常用值,并根据训练速度和准确率来确定合适的大小。收敛速度:较大的批量大小可以加速训练过程,因为每个批次处理的样本更多。较小的批量大小可能会导致模型收敛速度较慢,但由于噪声较大,有助于模型跳出局部最小值。准确率:在许多情况下,较小的批量大小可以提高模型的泛化能力。因此,选择合适的批量大小对于在训练速度和准确率之间实现平衡至关重要。计算资源:较大的批量大小需要更多的内存。较小的批量大小占用较少的内存,使得训练可以在具有有限资源的设备上进行。

2023-05-08 11:18:44 1713

原创 日攻一卒 ---机器学习中 标准化和归一化的区别?

在机器学习中,标准化是一种常用的数据预处理方法,与归一化不同,标准化是一种基于特征的统计量,例如均值和标准差, 来缩放数据的方法。具体来说,归一化的目的是将数据的值域缩放到一个固定的范围内, 通常是【0,1】或者【-1, 1】。在机器学习中, 归一化是一个重要的预处理步骤,归一化可以将所有的特征放到相同的尺度, 以确保他们具有相同的重要性。因为不同的特征之间的单位(量纲)可能不同,导致某些特征对模型的训练和预测产生更大的影响。他的目的是将数据缩放到相同的尺度,去除异常值的影响,以便于模型的训练和优化。

2023-04-25 15:01:48 185

原创 日攻一卒 ---简单的神经网络

这是网络的前向传播方法。他接受输入张量x(经过卷积层处理后的特征向量),将其传递给定义的全连接层, 然后返回输出张量。输出张量的维度是 (batch_size, num_classes),表示每个样本属于每个类别的概率分布。这是一个PrivateFCN的全连接网络(FCN), 继承了pytoch中的nn.Module。这个网络包括一个线性层,一个激活函数,以及另一个线性层。第一层: 线性层,输入维度是2048,输出维度是64.在这个方法中,定义了网络的结构。第二层:线性层, 输入64,输出维度是 ‘

2023-04-24 18:15:40 142

原创 日攻一卒 ---正态分布

正态分布,也称高斯分布,是一种连续概率分布。在正态分布中,数据的大部分值集中在均值附近,并且符合“68-95-99.7规则”,即在一个标准差内的数据占据了约68%的比例,在两个标准差内的数据占据了约95%的比例,在三个标准差内的数据占据了约99.7%的比例。正态分布在自然界和社会科学中都有广泛的应用,因为许多现象,例如人类身高、智力、收入等都呈现出正态分布的特征。其中,μ是均值,σ是标准差,π是圆周率,e是自然常数。

2023-04-21 15:24:55 262

原创 日攻一卒 ---- SimCLR -自监督学习方法

对比学习(Contrastive Leaning): 学习如何将不同的样本区分开, 即学习将不同的样本映射到不同的空间位置上。通常通过比较两个样本的相似性来学习,将相似的样本映射到相近的空间位置上, 将不想死的样本映射到远离的空间位置上。自监督学习(Self - Supervised Learning): 在没有标注标签的情况下,通过利用数据的自身特点进行学习的一种机器学习方法。通过对图像进行数据增强和对比学习来学习到有用的特征表示,从而在没有标签的情况下实现了有监督学习的效果。

2023-04-21 11:15:59 590

原创 均值、方差、标准差的理解

评价计算机性能的 数学基础知识

2023-04-20 22:16:36 1847

原创 docker desktop,拉fate1.10镜像,怎样在镜像中安装jupyter 并能在浏览器中访问

复制该URL并将其粘贴到宿主机的浏览器中。将127.0.0.1替换为localhost,然后按Enter键。你现在应该能看到Jupyter的主界面。如果之前启动过,黄色,如果没启动过,红色,注意,开头是不同的,有的是C:// 有的是root ,有的是venv。进入docker环境。

2023-04-11 13:18:49 315 1

原创 个人Windows利用Docker安装FATE,单机版

这里直接拉取最新版本,若需要特定版本则要在镜像名后加":{需要的版本号}",如果下载失败则尝试使用国内的镜像源。按下 Ctrl + D 或输入 exit 命令来退出当前 shell 环境。Windows中更改Docker默认安装路径方法。因为镜像太大,默认在c盘,所以要先创建软连接。执行下述两行代码,进行简单测试。

2023-04-03 14:22:58 374

原创 随机梯度下降算法SGD(Stochastic gradient descent)

随机梯度下降SGD stochastic gradient descent

2023-03-14 14:46:49 8662

原创 基于核方法的测试实例 学习笔记

基于核方法的测试实例

2023-03-09 10:34:54 201

原创 SQL之正则表达式的简单使用

SQL中的正则表达式

2022-01-21 11:47:42 3262

原创 MySql练习 一、二

SQL之DQL查询练习语句

2022-01-21 10:39:29 685

原创 Sql基本查询----DQL(Data Query Language)

SQL DQL

2022-01-10 17:37:16 302

原创 Linux用户管理

Linux用户管理学习笔记

2022-01-09 21:04:06 68

原创 Linux Vim常用命令

Linux vim常用命令

2022-01-08 17:01:39 571

原创 MySql约束

2022-01-06 17:26:45 367

原创 MySqlDML操作

MySql的DML操作定义:date manipulation language对数据库中的数据进行更新关键字​ 插入 insert​ 格式​ 格式1: insert into 表(列1,列2,列3)values(值1,值2,值3);​ 格式2: insert into 表 values(值1,值2,值3);​ 例子​ 例子1 :insert into student(sid,sname,sage) values(1001,‘张三’,45);​ .

2022-01-05 13:42:12 268

原创 MySql的DDL操作

MySql的DDL操作-----学习记录

2022-01-05 12:19:33 480

原创 数据结构-基于图的邻接矩阵-图的基本操作-数据结构考研

考研数据结构c语言实现存储方式为邻接矩阵存储图的各种基本操作实现自己测试的都可以实现,或许有一些不严谨的地方,欢迎指正!#include<stdio.h>#include<stdlib.h>#define MaxVexNum 100typedef char VertexType; // 顶点的类型 typedef int EdgeType; //边的类型 typedef struct { VertexType Vex[MaxVexNum]; //顶点

2021-08-11 18:07:42 312

原创 jmeter测试秒杀系统

新建线程组,这里采用5000个线程循环10次设置一下默认配置,之后就不用反复填写了设置配置文件设置HTTP 请求结果:

2020-06-12 08:45:17 514

原创 优化

秒杀原理秒杀系统,是典型的短时大量突发访问类问题。对这类问题,有三种优化性能的思路:写入内存而不是写入硬盘异步处理而不是同步处理分布式处理页面缓存: @RequestMapping(value = "/to_list", produces = "text/html") @ResponseBody public String list(HttpServletRequest request, HttpServletResponse response, Model model, Mia

2020-06-12 08:35:25 90

原创 spring boot 整合swagger

原文链接:https://www.cnblogs.com/cndarren/p/11769342.htmldemo实现的过程中也经历了很多的bug。bug开路!!!!BUG1 :这个是注解错误,复制的依赖都有错误。。。在网上搜索得到的反馈是下载依赖缺失。解决思路:ok,解决然后 第二个bugSLF4J: Class path contains multiple SLF4J bindings.SLF4J: Found binding in [jar:file:/F:/tool/id

2020-06-04 21:27:42 131

原创 秒杀系统:列表详情以及倒计时功能

继续之前列表,因为是列表信息的详细信息,因此正确的格式应当为"/to_detail/{goodsId}"故首先对Controller层设置: @RequestMapping("/to_detail/{goodsId}") public String detail( Model model,MiaoshaUser user, @PathVariable("goodsId") long goodsId){ model.addAttribute("user",user)

2020-05-29 17:32:48 298

原创 秒杀系统:商品列表

第一部分 数据库数据库的表格为:goods、 miaosha_goods、miaosha_order、 miaosha_usergoods 表格代码:DROP TABLE IF EXISTS `goods`;CREATE TABLE `goods` ( `id` bigint(20) NOT NULL AUTO_INCREMENT COMMENT '商品ID', `goods_name` varchar(16) DEFAULT NULL COMMENT '商品名称', `goods_t

2020-05-29 17:22:22 654

原创 秒杀系统的学习

还没写呢

2020-05-15 09:20:51 160

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除