2.1 函数的连续性【函数的连续性】

本文详细探讨了函数的连续性概念,从生活中的温度变化、水位变化和车辆位置等实例引入,逐步阐述了在一点处、一个区间上连续的数学定义,并介绍了初等函数的连续性特点。通过具体的例题解析,帮助读者理解和掌握函数连续性的判断与应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

2.1 函数的连续性【函数的连续性】

2.1.1 引例

为了更生动地理解函数的连续性,我们通过几个具体的日常生活中的例子来说明。

例子1:温度变化

一个美丽的春日午后,阳光洒在肌肤上。此时,你用心感受一天中温度的变化,当微风吹过的时候,是不是有一种岁月静好的感觉?如果气温在冷热直接不断来回跳跃,还会有这种感觉吗?

气温的变化可以用温度T-时间t函数图像来描述,气温都是连续升高或者降低,不会直接从一个温度跳到另一个温度。

例子2:水位变化

你站在一片湖边,静静地观察湖水的变化,湖水轻轻波动,如同坐标轴上的正弦曲线。

湖水的水位高度的变化可以用 高度H-时间t,如果中学物理学过机械振动和机械波,那么应该非常熟悉它的图像。

例子3:车辆位置

一辆汽车沿着风景优美的山路行驶。车辆在弯道上轻轻转动,而不是在某个瞬间蹦到另一个位置。这就是连续性,就像我们感受到风景的流畅过渡。

汽车的位移或路程的变化就是中学物理中经常研究的s-t图像。


生活中有

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

少侠PSY

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值