2.3连续函数的基本定理【函数的连续性】

本文详细介绍了连续函数在闭区间上的最值定理、有界性定理、介值定理和零点定理。通过具体例子解释了这些定理的含义和应用场景,并展示了如何利用这些定理解决相关问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

2.3连续函数的基本定理【函数的连续性】

2.3.1 最值定理

在闭区间的最左端向右画出函数图像,最开始只有最左端的端点值,该点值既是最大值也是最小值。作图过程中,如果出现函数值比之前已经出现的最大值更大,则得到了新的最大值;如果出现函数值比之前已经出现的最小值值更小,则得到了新的最小值。当图像画到最右端时,最后记录下的最大值和最小值就是整个图像上的最大值和最小值。

最值定理: 设 f ( x ) f(x) f

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

少侠PSY

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值