首先,数据分析是大数据技术体系当中的一个重要组成部分,所以未来要想在数据分析领域走得更远,应该对大数据整体的技术体系有一个全面的了解,涉及到数据采集、数据存储、数据呈现、数据安全和数据应用等。
数据分析当前有两种常见的方式,一种是统计学方式,另一种是机器学习方式,当前统计学方式有一套比较完整的技术体系,相关内容的学习也会更容易一些,而机器学习方式对于初学者的要求相对高一些,往往需要初学者具有一定的编程基础和数学基础。
Python语言在数据分析领域的应用比较广泛,采用机器学习的方式进行数据分析,往往也需要采用Python语言来完成算法实现和落地应用,所以学习数据分析从Python语言开始学起也是比较常见的选择。由于Python语言本身的语法结构比较简单,而且Python语言自身的库也比较丰富,所以即使没有编程基础的人也可以顺利入门Python语言。
初学者学习完Python语言的基本语法之后,可以进一步学习机器学习知识,可以从一些经典的算法开始学起,比如决策树、k-mean、朴素贝叶斯等等,然后基于Python语言来完成这些算法的实现、训练、验证和应用步骤。当然,这个过程最好能够结合一些实际的应用场景,这会积累不少实践操作经验。
在入门机器学习知识之后,可以进一步学习一下大数据平台知识,整个大数据技术体系往往都以大数据平台为基础,所以掌握大数据平台对于数据分析人员的工作开展还是比较重要的。对于初学者来说,可以从Hadoop、Spark开始学起,相关的学习案例也比较多。
最后,学习数据分析知识一定要重视行业知识的积累,大数据分析往往与行业场景关系密切,掌握行业知识对于数据分析的过程也有非常直接的影响。
我从事互联网行业多年,目前也在带计算机专业的研究生,主要的研究方向集中在大数据和人工智能领域,我会陆续写一些关于互联网技术方面的文章,感兴趣的朋友可以关注我,相信一定会有所收获。
如果有互联网、大数据、人工智能等方面的问题,或者是考研方面的问题,都可以在评论区留言,或者私信我!