自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

科技匠心的博客

聚焦科技,开心生活

  • 博客(33)
  • 收藏
  • 关注

原创 【Qt Quick】零基础入门系列之QML布局与基础控件(三)

|本文大概阅读时间5分钟。|版权说明:原创文章,如需转载,请标明文章出处。https://blog.csdn.net/weixin_40192195/article/details/109205056目录一.前言1.Layout(布局)1)ColumnLayout(垂直布局)2)RowLayout(行布局)3)Grid(栅格布局)2.Component(组件)1)当前文件内2)自定义组件3.Control(基础控件)1)Lable(标签)2)TextInput(文本输入框)3)ComboBox(下拉

2020-10-22 10:46:02 899

原创 【Qt Quick】零基础入门系列之QML语法(二)

程序打包静态库和动态库区别静态库是和编译程序一起的。动态库是动态链接的。Qt应用程序由可执行文件exe、动态库dll和so,通常是Qt的第三方库和模块、图片,翻译文件和文档。打包软件

2020-10-21 11:43:40 538 2

原创 深入理解基于信息论的机器学习模型

前言  上一篇(https://blog.csdn.net/weixin_40192195/article/details/88807562) 简单讲解了信息论的相关知识,今天将信息论实际应用到机器学习模型中,尽量充分讲解每一个点,思路如下:信息论–>决策树–>Bagging–>starcking1. 决策树  决策树模型作为另一种解决问题的思路。也是工业界常用的模型,因为...

2019-04-02 09:43:47 1426

原创 人工智能数学之信息论

信息论信息论(Information Theory)是概率数理统计分支,我们主要看信息论在人工智能中的应用,所以目前只关注相关的信息。例如基于信息增益的决策树,最大熵模型, 特征工程中特征选取时用到的互信息,模型损失函数的交叉熵(cross-entropy)。信息论中log默认以2为底。基础1.熵直观来说熵就是表示事情不确定性的因素度量,熵越大不确定性就越大,而不确定性越大,带来的信息则越...

2019-03-25 22:04:43 3789

原创 人工智能之数学(概率方面)

我们经常使用的统计机器学习算法,或者是神经网络模型中,数学作为最基础的根基,融合了高等数学中的微分学、概率、线性代数、凸优化等方面,每一个方面深入后都是有很多的益处,但是本着先实用,在进行学习的原则。所以主要是理解相关数学符号,理解统计学习中一些和概率相关的算法推导,即可。概率: 一件事情发生的概率,等于该事件发生的数目除以所发生的数目。例如电影院观影人数为100人,女生50人,男士50人,你看...

2019-03-23 20:44:41 1772

原创 人工智能数学之范数

范数概念范数是一种强化了的距离概念,包含向量范数和矩阵范数。线性代数中我们知道一个向量(m1)通过一种映射关系(矩阵 nm),可以得到另一组向量(n*1)。其中向量范数表示了向量空间中,这个向量的大小,因为向量都是有大小的,所以度量就使用了范数 。矩阵范数,表示在这个映射中,变化大小的度量。向量范数L-P范数L-P范数作为一组范数,定义如下:L0范数P=0的范数,当p=0,数学层面...

2019-03-20 15:59:16 2291 1

原创 降重,降AI

扫码,自动领取。

2024-05-09 15:20:01 2074

原创 超详细|10分钟ChatGPT完成文献综述大作业

撰写此教程目的是辅助大家高效完成作业,使用AI工具更好的发挥我们的创新,喜欢学术的同学还是建议好好学习文献综述能力!!!祝看到本教程的小伙伴们都完成作业。 可以加QQ群交流,一群:123589938第一章 文献综述框架文献综述大作业是绝大多数本科学生都需要做的课程作业。部分对学术不是很感兴趣的同学撰写过程就会非常的苦恼。为了减轻大家的压力,经过一周的对比研究,找到了使用ChatGPT辅助该作业的方法。研究不易,希望大家双击屏幕,给点鼓励。文献检索也是有一个框架的,不管什么题目,万变不离其宗

2023-08-03 14:41:33 7218

原创 超详细|ChatGPT辅助论文编写教程

本教程讲述在论文编写中使用ChatGPT进行辅助,提供思路,提升效率祝看到本教程的小伙伴们都完成论文,顺利毕业。 可以加QQ群交流,一群:123589938第一章 论文框架搭建1.1 明确论文题目1.1.1 适合的研究方向首先赋予它角色,并进行提示。下图为3.5版本的回复下图为4.0版本的回复可以清晰的发现,ChatGPT4.0版本相比于3.5版本在逻辑、回复精确度都有了大幅度的提升。但是,因为提问的质量不高,过于泛泛,所以答复的不够精确,需要继续细化1.1

2023-08-03 14:40:43 1662

原创 超详细|ChatGPT辅助论文降重教程100%降至13%

本文讲述使用ChatGPT对论文进行辅助降重,鼓励大家解放大脑,多思考核心论点祝看到本教程的小伙伴们都完成论文,顺利毕业。 可以加QQ群交流,一群:123589938第一章 ChatGPT指令1.1 同义词替换对比分析,发现ChatGPT中文的同义词替换,多是替换名词,例如无人车替换成了自动驾驶车辆。其他专有名词基本没有替换,这种降低效果有限,需要配合其他指令。1.2 同义词替换+改变语序降重系统一般是14个连续的字比对相似度,所以,改变语序可能会产生一定的效果,需要后面检

2023-08-03 14:40:05 2793

原创 超详细|ChatGPT论文润色教程

本文讲述使用中科大开源ChatGPT论文辅助工具,对论文进行润色祝看到本教程的小伙伴们都完成论文,顺利毕业。可以加QQ群交流,一群:123589938第一章 介绍今天给大家分享一款非常不错的ChatGPT论文辅助工具,使用了专业的prompt提示,对论文进行一键优化。功能包括 中英互译、语法错误查找自动纠正、还可以自动将ChatGPT输出的LaTex格式的公式进行转换。为了验证该工具,我将八篇本科论文进行润色,进行对比,效果挺不错的。所以推荐给大家。该工具内部搭建简单,3分钟即可。该工具

2023-08-03 14:39:17 6472

原创 【Qt Quick】Button控件和Container容器(四)

|本文大概阅读时间5分钟。|版权说明:原创文章,如需转载,请标明文章出处。https://blog.csdn.net/weixin_40192195/article/details/109217982目录一.前言1.Button Controls(按钮)1)Button2)CheckBox(复选框)3)RadioButton(单选按钮)4)DelayButton(延时按钮)5)RoundButton(圆形按钮)6)Switch(滑动)7)ToolButton(工具按钮)2.Container(容器)

2020-10-23 09:26:08 977

原创 【Qt Quick】零基础入门系列之安装与卸载(一)

Qt Quick零基础快速入门系列。

2020-10-19 16:21:45 1847

原创 IPsec (Internet Protocol Security)

IPsec (Internet Protocol Security)是开放的框架结构,在IP层通过使用摘要(Md5)算法和加密算法对数据包进行安全传输,保证数据安全传输的基本三要素,私密性、完整性、真实性。IPsec是为了提高IP层数据的安全,vpn则是在安全特性下为了解决具体的实际问题而产生的技术。PS:加密算法在国密算法系列会主要讲解,本系列不在重复介绍。IPsec框架由IPsec安全协议、数据加密、数据摘要、对称密钥交换四部分组成。IPsec安全协议(可使用算法):ESP...

2020-10-08 13:48:01 1069 1

原创 密码学之国密算法

国密算法系列(一)提示:本文是国密系列的首篇,主要讲述国密算法的概况。整个系列讲述国密算法的具体应用以及代码实现,如需转载请标注作者,谢谢!!!1.前言近些年随着人工智能、5G通信等技术迅猛的发展,个人所产生的数据、传输的数据逐渐增多,国际局势也风云变幻,信息安全成为当前不容忽视的问题。密码算法作为信息安全的核心自然而然成为关注的重点。2019年10月27日中华人民共和国密码法发布,也展露出国家对于密码产业的重视。国密算法是国家密码管理局制定的标准的一系列的算法。其中包括SM1分组密码算法、SM

2020-10-07 11:23:00 1422

原创 人工智能之特征工程

特征工程(图片来源:https://blog.csdn.net/v_JULY_v/article/details/81319999)我们在人工智能学习的道路上,很容易忽略基础的特征工程,都在学习各种机器学习算法,深度学习算法等。但是在实际的工作中,解决实际问题的时候,遇到几万个特征,几千万的样本,该如何选择特征。一个好的数据特征,可以从根本上提高模型准确率的上线,而好的算法模型只是不断的逼近...

2019-03-24 21:58:20 788

原创 机器学习之生成和判别模型

生成模型与判别模型监督学习是在有标签的情况下,进行模型的训练一种方式,监督学习模型又可以分为生成式模型或者是判别式模型。**判别式模型(Discriminative Model)**主要是确定一个决策函数,或者是条件概率分布:输入特征X通过函数返回预测值Y,在将Y映射成概率或者是和阈值进行比较或者和真实值进行比较。直观来说,判别模型学习的是类别之间的最优分隔面,反映的是不同类数据之间的差异...

2019-03-22 15:08:25 326

原创 机器学习之偏差方差

一.偏差和方差  1.偏差和方差分别是用于衡量一个模型泛化误差的两方面:  模型偏差:模型预测的期望值和真实值之间的差。  模型方差:模型预测的期望值和预测值之间的差的平方  2.监督学习,模型泛化误差可以分为偏差/方差/噪声的和  所以偏差表示的是模型的拟合能力。方差描述的是模型内部的稳定性。1.导致偏差和方差的原因  偏差描述的是模型对于真实函数的拟合能力,出现偏差较大的原因...

2019-03-21 15:41:56 682

原创 机器学习之支持向量机

支持向量机(SVM)1.概念:支持向量机作为有监督的机器学习,可以做分类和回归。主要是二分类,它的基本模型是定义到特征空间上的间隔最大的线性分类器,因为有间隔最大的条件,所以和感知机有区别,支持向量机包含着核函数,使它成为了非线性的分类器。我们之前学的逻辑回归,线性回归,都是通过损失函数来寻找最佳的参数。SVM是通过寻找最大的间隔,数学上可以理解为求解凸二次规划的问题,也等价于正则化的合...

2019-03-19 15:07:38 453

原创 机器学习之数据预处理

一. 导入需要的库例如,科学计算的NumPy、数据处理的Pandas。画图的包matplotlib。二. 导入数据集使用pandas.read_csv读取csv文件。使用其他的方法读取不同类型的文档。三. 处理数据的缺失值我们可以使用缺失数据那一列的均值,或者是中位数、众数来进行替换,如何数据量大的情况下,也可以视情况来进行缺失数据的删除。四. 特征归一化样本的不同的特征之间的值...

2019-03-18 21:50:38 321

原创 机器学习之K-NN(K近邻)

K-NN(K-nearest neighbor)是一种分类算法,也可以用于回归,它无参数学习,在有监督的情况下,查看当前数据距离k个离它较近的其他数据中,最多的数据类别就是当前数据的类别。所以K-NN也被称为惰性算法,是基于实例的。基于实例的学习1.不同于我们之前学到的逻辑回归、线性回归,都是在训练集一定的情况下,去模拟真实函数的模型,输入特征对照正确输出。但是基于实例的学习就是讲数据简单...

2019-03-16 20:09:00 384

原创 机器学习之逻辑回归

逻辑回归从数学的角度理解,就是一元或者多元线性函数预测了一个值,使用sigmoid函数将这个值映射到了0-1的值域上,理解为输出相应样本类别的概率。逻辑回归用在分类的问题上却叫回归,可能是逻辑回归用了回归类似的方法来解决了分类的问题。1. 二元逻辑回归模型对线性回归的结果做一个在函数g上的转换,可以变化为逻辑回归。这个函数g在逻辑回归中我们一般取为sigmoid函数,形式如下:sigm...

2019-03-15 14:49:49 399

原创 机器学习之模型评估(二)

AUC(area under the curve)是ROC曲线的面积,那么ROC曲线是横坐标为FPR(假正率)纵坐标TPR(真正率)组合,随着样本阈值的不断变化,(FPR,TPR)不断变化形成的曲线。FPR和TPR是通过混淆矩阵下求得。所以简单回顾一下上一篇,ROC曲线并不是光滑的,因为阈值的变化并不一定影响到样本的变化,所以应该是阶梯型的。AUC值的意义我们首先看一下下面的图:纵坐标为...

2019-03-14 14:59:44 655

原创 机器学习之模型评估(一)

为什么要评估模型目的是找到最有效的模型。模型开始的时候分布都是一定的,但是随着时间的不断推移,数据的分布会发生一定的变化,这种现象称为分布漂移。而验证指标就是对数据变化的一种模型性能跟踪,当模型的性能变化到一定程度,就要对模型进行重新训练了。怎么检验和评估模型机器学习分为原始设计阶段和应用阶段,原始设计阶段是在历史数据上训练一个适合解决目标任务的一个或者是多个机器学习模型,并且进行模型的验...

2019-03-13 22:34:03 1082

原创 机器学习之多元线性回归

一、多元线性回归多元线性回归在数学表达式上和一元线性回归相差相差不大,只是因为输入的特征变多,导致了从一元变成了多元。也可以使用它找到对于预测结果来说那个特征的影响较大,不同的变量之间是如何相互关联的。1、前提如果要完成一个成功的回归分析,需要得到下面的假定。1)自变量和因变量要满足线性关系。2)误差项的方差要等同3)多元正态分布:多元回归要假定残差符合正态分布4)数据很少或者没...

2019-03-12 13:01:31 820

原创 机器学习之线性回归

一. 简单线性回归第一步:数据预处理参考上篇博客:1)导入pandas、numpy。2)使用pandas导入数据3)处理数据缺失值4)将类别特征的输入及标签进行数值化5)进行数据的归一化或者标准化6)划分数据集第二步:通过训练集训练模型因为选择了线性回归模型,所以使用的是sklearn.linear_model中的LinearRegression。第三步:预测训练好模型...

2019-03-11 13:13:09 359

原创 机器学习之数据预处理

一. 数据预处理1)导入主要的库,pandas数据处理库,Numpy数学运算库。2)导入数据集,数据集的格式有很多,json,csv,txt,等以csv为例,通过pandas读取。3)数据集中会出现很多问题,例如缺失值,异常值,会影响模型的准确率,所以需要对这些值进行处理。这里会用到sklearn库,sklearn.preprocessing中的Imputer中完成。4)处理标签值,如...

2019-03-10 22:25:23 584

原创 反向传播算法之数学原理

反向传播算法之数学原理一. 数学原理  反向传播从数学的角度考虑,就是利用了链式法则求导,其中的梯度下降算法也是微分学的一个知识点。以一层神经元为例。  输出层的激活值 a^(L) ,L表示输出层,前一层的激活值为a^(L-1)。  单一训练样本,已知训练值为y。计算损失函数。  整体的流程是  • 先使用前一个激活值和权重 w 以及偏置 b 计算出 z  • 再将 z ...

2019-03-09 18:54:30 1578

原创 10分钟快速理解反向传播算法

一. 反向传播算法1. BP算法自然语言描述  概念:梯度下降是利用损失函数的梯度,来决定最终的下降方向。反向传播算法是计算复杂梯度的方式。数学原理就是链式法则。  梯度向量中每一项,不光告诉我们每个参数增加还是缩小。并且指出了每个参数的“性价比”  我们从单样本训练进行观察。  输入的特征为784个,两层隐藏层,输出层为类别,10个节点。输出的目标为识别为2,我们看到输出层的激活值...

2019-03-08 15:21:35 1219

原创 从0到1理解神经网络结构(下)

从0到1理解神经网络结构(下)从0到1理解神经网络结构(上):https://blog.csdn.net/weixin_40192195/article/details/88252340  模型训练目的是找到最优的参数可以和最真实的模型逼近,具体的训练方式,首先给所有的参数赋予随机的值,然后通过随机生成的值和输入的特征进行运算,得到预测的训练目标yp,真是的目标是y,那么他们之间就存在一个损...

2019-03-07 17:08:32 337

原创 从0到1理解神经网络结构(上)

从0到1理解神经网络结构(上)一、 前言下图为经典的神经网络,主要有三层,第一层为输入层,第二层为隐藏层,第三层为输出层。图1 神经网络结构图需要着重记住几点:在设计神经网络时,输入层与输出层节点是固定的,隐藏层可以随意指定。箭头方向代表模型预测过程中的流向。神经网络中最重要的是神经元之间的连线,连线对应的是不同的权重,也是神经网络预测的目标。将权重调整到最佳的状态,使网络的预测效...

2019-03-06 19:53:19 1912

原创 神经网络中激活函数的总结

激活函数出现的原因1、遇到线性不可分的数据。神经网络也找不到一条合适的直线。2、如何解决尝试单层感知机。尝试多层感知机化简后发现仍然是一个线性分类器。3、激活函数的作用在隐藏层和输出层之间加入一个激活函数,sigmoid。多层感知器激活函数就是在神经元上加一个壳,为神经元带来非线性因素,提升模型的表达能力。第一步计算线性变化,第二步计算非线性变换。激活函数大...

2019-03-05 22:37:42 860

原创 如何处理数据不平衡问题?

0 引言我们在处理实际业务时,经常会遇到训练数据中不同类别样本比例差距过大的情况。例如银行贷款业务欺诈问题,我们要清楚银行贷款业务主要识别的就是具有一定风险的贷款客户,而实际样本中,大多数都是及时偿还的正样本,只有少数是未偿还的负样本,如果我们不做任何预处理,模型很可能因为正样本数量多,而把很多风险客户识别成正常客户,造成损失。所以首先要明确具体业务的根本要求。下面是我总结的解决办法,有什么问题...

2019-03-04 22:43:51 1886 1

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除