缓存穿透
概念
大量的请求在缓存中查不到,然后去数据库中也查不到,这会给数据库造成很大的压力,就相当于出现了缓存穿透。
举个例子,数据库 id 是从 1 开始的,结果发过来的请求 id 全部都是负数,这样的话,数据库中不会有,缓存中更不会有, 这样就导致用户查询的时候,在缓存中查不到,在数据库中也查不到(相当于进行了两次无用的查询)
解决方案
采用布隆过滤器BloomFilter
将所有可能存在的数据哈希到一个足够大的bitmap中,一个一定不存在的数据会被这个bitmap拦截掉,从而避免了对底层存储系统的查询压力,在缓存之前加一层BloomFilter,在查询的时候先去BloomFilter去查询key是否存在,如果不存在就直接返回,存在再去查询缓存,缓存中没有再去查询数据库。
缓存空值
如果一个查询返回的数据为空(不管是数据不存在,还是系统故障)我们仍然把这个空结果进行缓存,但它的过期时间会很短,最长不超过5分钟。通过这个设置的默认值存放到缓存,这样第二次到缓存中获取就有值了,而不会继续访问数据库。
缓存击穿
概念
缓存击穿,就是说某个 key 非常热点,访问非常频繁,处于集中式高并发访问的情况,当这个 key 在失效的瞬间,大量的请求就击穿了缓存,直接请求数据库,就像是在一道屏障上凿开了一个洞。
解决方案
解决方式也很简单,可以将热点数据设置为永远不过期;或者基于 redis or zookeeper 实现互斥锁,等待第一个请求构建完缓存之后,再释放锁,进而其它请求才能通过该 key 访问数据。
缓存雪崩
对于系统 A,假设每天高峰期每秒 5000 个请求,本来缓存在高峰期可以扛住每秒 4000 个请求,但是缓存机器意外发生了全盘宕机(还有情况是大量key同时到期),缓存挂了,此时 1 秒 5000 个请求全部落数据库,数据库必然扛不住,它会报一下警,然后就挂了。DBA 很着急,重启数据库,但是数据库立马又被新的流量给打死了。这就是缓存雪崩。
缓存雪崩的事前事中事后的解决方案如下
- 事前:redis 高可用,主从+哨兵,redis cluster,避免全盘崩溃。
- 事中:本地 ehcache 缓存 + hystrix 限流&降级,避免 MySQL 被打死。
- 事后:redis 持久化,一旦重启,自动从磁盘上加载数据,快速恢复缓存数据。
用户发送一个请求,系统 A 收到请求后,先查本地 ehcache 缓存,如果没查到再查 redis。
如果 ehcache 和 redis 都没有,再查数据库,将数据库中的结果,写入 ehcache 和 redis 中。
限流组件,可以设置每秒的请求,有多少能通过组件,剩余的未通过的请求,怎么办?走降级!可以返回一些默认的值,或者友情提示,或者空白的值。
好处:
- 数据库绝对不会死,限流组件确保了每秒只有多少个请求能通过。
- 只要数据库不死,就是说,对用户来说,2/5 的请求都是可以被处理的。
- 只要有 2/5 的请求可以被处理,就意味着你的系统没死,对用户来说,可能就是点击几次刷不出来页面,但是多点几次,就可以刷出来一次。