题目:
分析:这是一道很好的动态规划的题目,题目跟原题有点像,原题可看这里,但不要混淆了。现在这么想,每个金额的求解必须要用小于这个金额的硬币进行组合才有解,用大于金额的硬币是求不出解的,那么可以从硬币金额出发,循环硬币金额,从该硬币金额开始求到amount,这时候子问题就是amount减该硬币金额剩下的金额组合数是多少,用一个一维数组dp来记录求解金额的组合数,如果采用自底向上的做法,那么子问题都会先一一求解或者得到更新
需要注意的是 : amount=0即无解,这也算作一种解的组合,所以dp[0]=1,与原题目dp[0]=0不一样,不要混淆;另外,经过举例推导发现dp[i] = dp[i] + dp[i-coins],求得递推式很快可以写出算法
代码:
class Solution {
public int change(int amount, int[] coins) {
int[] dp = new int[amount+1];
//根据我们的算法,出现0的情况只能是j-coins[i]=0,所以相当于只有一种情况
dp[0] = 1;
for(int i = 0; i < coins.length; i++){
for(int j = coins[i]; j <= amount; j++){
dp[j] += dp[j-coins[i]];
}
}
return dp[amount];
}
}