(14)关于PyTorch训练深度学习模型CPU/GPU使用率低,训练速度慢这一问题的总结

在使用双2080Ti+i7-10700K训练mobilenet-yolov4-lite时,发现GPU利用率低,训练速度慢。尝试减少日志IO、使用pin_memory和num_workers以及调整batch_size和num_workers,但效果不明显。可能问题包括内存插槽影响GPU性能、CPU预处理数据耗时过长。寻求解决方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

电脑配置双2080Ti+i7-10700K,使用mobilenet-yolov4-lite训练VOC数据集时,训练100epochs要五六个小时,检测cpu和gpu的使用发现利用率都很低,说明没有充分使用电脑优秀的性能,两个显卡的使用率都分别只有20%-50%,查阅一些资料总结如下:

1、参考:【深度学习】踩坑日记:模型训练速度过慢,GPU利用率低

上面作者指出四个提速技巧:

  • 减少日志IO操作频率
  • 使用pin_memory和num_workers
  • 使用半精度训练
  • 更好的显卡,更轻的模型

其中,第四个无力改变,前两个均进行尝试,首先在train.py文件中改变了日志输出

评论 13
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值