下载PDF或阅读论文,请点击:LlamaFactory - huggingface daily paper - 每日论文解读 | LlamaFactory | LlamaFactory
摘要
时间序列分析从传统的自回归模型、深度学习模型,发展到最近的Transformer和大型语言模型(LLM),经历了令人鼓舞的发展。在利用视觉模型进行时间序列分析方面也作出了一些努力,但由于该领域在序列建模方面的研究占据主导地位,这些努力对社区来说并不那么明显。然而,连续时间序列与LLM的离散标记空间之间的差异,以及显式地建模多变量时间序列中变量之间相关性的挑战,使得一些研究关注点转向同样成功的大型视觉模型(LVM)和视觉语言模型(VLM)。为了填补现有文献的空白,这篇综述讨论了视觉模型在时间序列分析中相对于LLM的优势。它提供了一个全面深入的概述,现有方法,同时从详细的分类法角度提供了双重观点,回答了关键研究问题,包括如何将时间序列编码为图像,以及如何针对各种任务对图像化时间序列进行建模。此外,我们讨论了在此框架中涉及的前处理和后处理步骤的挑战,并概述了利用视觉模型进一步推进时间序列分析的未来方向。
一句话总结
本文全面调查了利用视觉模型进行时间序列分析的方法,并提供了对现有方法的深入概述。