下载PDF后查看论文,请点击:
摘要
四维高斯 splatting (4DGS) 近年来作为一种重建动态场景的方法受到了广泛关注。尽管4DGS取得了优异的质量,但它通常需要大量的存储空间并且渲染速度缓慢。在这项工作中,我们深入研究了这些问题,并确定了时间冗余的两个主要来源。(Q1) 短寿命高斯:4DGS 使用大量具有短时间跨度的高斯函数来表示场景动态,导致高斯函数数量过多。(Q2) 非活动高斯:渲染时,只有一小部分高斯函数会对每一帧产生贡献。尽管如此,在光栅化过程中仍会处理所有高斯函数,从而导致冗余计算开销。为了解决这些冗余问题,我们提出了4DGS-1K,它在现代GPU上运行速度超过1000 FPS。针对Q1,我们引入了时空变化评分,这是一种新的剪枝标准,可以有效去除短寿命高斯函数,同时鼓励4DGS使用具有更长时间跨度的高斯函数来捕捉场景动态。针对Q2,我们为连续帧中的活动高斯函数存储了一个掩码,从而显著减少了渲染中的冗余计算。与原始4DGS相比,我们的方法在复杂动态场景下的存储空间减少了41倍,光栅化速度提高了9倍,同时保持了相当的视觉质量。请访问我们的项目页面了解更多信息:https://4DGS-1K.github.io。
一句话总结
本文提出了一种名为4DGS-1K的新型4D高斯散射方法,通过减少冗余的高斯数量和改进渲染效率,实现了在复杂动态场景中1000+ FPS的渲染速度,同时保持了与原始4DGS方法相当的视觉质量。
问题1:这篇论文想要解决什么具体问题?
- 问题背景:现有的4D高斯散射(4DGS)方法在重建动态场景时虽然能达到较高的质量,但是需要大量的存储空间并且渲染速度慢。
- 现有方案不足:4DGS方法存在时间冗余问题,包括大量的短生命周期高斯和渲染过程中大量的非活动高斯,导致存储空间过大,渲染速度缓慢。
- 研究目标:本文旨在解决4DGS方法的存储空间大和渲染速度慢的问题,目标是设计一种更高效的4D高斯散射方法,在保持高视觉质量的同时,显著提高渲染速度并降低存储需求。
问题2:论文的核心创新点是什么?
- 技术创新:提出了空间-时间变化评分(Spatial-Temporal Variation Score)作为新的剪枝标准,有效地去除短生命周期高斯,并采用关键帧时间滤波器来过滤非活动高斯。
- 方法改进:通过两步剪枝策略,第一步去除对场景影响小的短生命周期高斯,第二步过滤掉每个帧中不活跃的高斯,并利用相邻帧之间活跃高斯通常重叠的特性来共享掩码。
- 优势:与原始4DGS相比,该方法在复杂动态场景中实现了存储空间减少41倍,渲染速度提高9倍,在1000+ FPS下保持了相当的视觉质量。
问题3:实验结果如何验证了方法的有效性?
- 关键实验:在Neural 3D Video数据集和D-NeRF数据集上进行了大量的定量和定性实验,比较了4DGS-1K与其他几种基线方法的性能。
- 性能提升:在Neural 3D Video数据集上,存储空间减少了41倍,渲染速度提高了9倍(超过1000 FPS),同时PSNR降低了0.04dB;在D-NeRF数据集上,存储空间减少了40倍,渲染速度提高了4倍,PSNR略有提高。
- 对比结果:与基线方法相比,4DGS-1K在存储空间和渲染速度上均有显著优势,同时保持了与4DGS相当甚至更好的视觉质量。
问题4:这个研究的实际应用价值是什么?
- 应用场景:该方法可以应用于需要实时或高效渲染动态场景的各种应用中,例如虚拟现实、增强现实、计算机视觉等领域。
- 实施建议:该方法基于现代GPU,可以直接部署到现有平台上。未来可以考虑进一步优化算法,以适应不同的硬件平台和应用需求。
- 局限与展望:该方法仍然存在一些局限性,例如剪枝策略的参数选择需要根据场景进行调整,并且时间滤波器的参数选择也可能影响最终结果。未来的研究可以探索更鲁棒的剪枝策略和时间滤波器,以及更有效的4D高斯表示方法,以进一步提高效率和质量。