【每日论文】Zero-1-to-A: Zero-Shot One Image to Animatable Head Avatars Using Video Diffusion

下载PDF或查看论文,请点击:

LlamaFactory - huggingface daily paper - 每日论文解读 | LlamaFactory | LlamaFactory探索LlamaFactory,为你解读AI前沿技术文章,快速掌握最新技术动态https://www.llamafactory.cn/daily-paper/detail/?id=1761

摘要

可动画的头像生成通常需要大量的训练数据。为了减少数据需求,一个自然的解决方案是利用现有的无数据静态头像生成方法,例如使用预训练的扩散模型和分数蒸馏采样(SDS),这些方法将头像与扩散模型的伪真实输出对齐。然而,直接从视频扩散中蒸馏4D头像往往会导致过度平滑的结果,因为生成的视频中存在空间和时间上的不一致性。为了解决这个问题,我们提出了Zero-1-to-A,这是一种鲁棒的方法,它使用视频扩散模型合成用于4D头像重建的空间和时间一致性数据集。具体来说,Zero-1-to-A以渐进的方式迭代构建视频数据集并优化可动画头像,确保在整个学习过程中头像质量平滑且持续提升。这种渐进式学习包括两个阶段:(1)空间一致性学习固定表情并从正面到侧面视图进行学习;(2)时间一致性学习固定视图并从放松到夸张的表情进行学习,以简单到复杂的方式生成4D头像。大量的实验表明,与现有的基于扩散的方法相比,Zero-1-to-A提高了保真度、动画质量和渲染速度,为逼真头像的创建提供了一个解决方案。代码在以下网址公开:https://github.com/ZhenglinZhou/Zero-1-to-A。

一句话总结

Zero-1-to-A提出了一种基于视频扩散模型从单张图像生成可动头部Avatar的方法,通过构建空间和时间一致性数据集,实现了高质量和高效的Avatar生成。

问题1:这篇论文想要解决什么具体问题?

  • 问题背景:可动头部Avatar生成通常需要大量数据来训练,而现有方法依赖于预训练的扩散模型,但直接从视频扩散中提取4D Avatar往往导致结果过于平滑,因为生成的视频在空间和时间上存在不一致性。
  • 现有方案不足:现有方法直接从视频扩散中提取4D Avatar,导致结果平滑且缺乏细节,无法生成逼真的Avatar。
  • 研究目标:提出Zero-1-to-A方法,通过视频扩散模型从单张图像生成高质量和逼真的可动头部Avatar。

问题2:论文的核心创新点是什么?

  • 技术创新:提出了SymGEN,通过构建空间和时间一致性数据集来增强Avatar生成的一致性。
  • 方法改进:采用渐进式学习策略,将视频扩散生成过程分解为空间一致性学习和时间一致性学习,确保稳定的初始化和质量的平滑提升。
  • 优势:相比现有方法,Zero-1-to-A在逼真度、动画质量和渲染速度方面有显著提升。

问题3:实验结果如何验证了方法的有效性?

  • 关键实验:通过与其他方法(如DreamFusion、ProlificDreamer等)的对比,Zero-1-to-A在逼真度、动画质量和渲染速度方面均有显著提升。
  • 性能提升:实验结果表明,Zero-1-to-A在ViT-L/14和ViT-B/32上的CLIP分数分别提高了0.1和0.05,表明其在高保真Avatar生成方面的有效性。
  • 对比结果:与基线方法相比,Zero-1-to-A在动画质量和渲染速度上都有所提升。

问题4:这个研究的实际应用价值是什么?

  • 应用场景:Zero-1-to-A可以应用于AR/VR、电影、游戏等领域,为用户提供逼真的虚拟形象。
  • 实施建议:Zero-1-to-A可以与现有的视频扩散模型和3D建模技术相结合,以实现更广泛的实际应用。
  • 局限与展望:目前Zero-1-to-A在建模头部以外的元素方面存在局限性,未来可以通过改进模型或引入新的技术来扩展其应用范围。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值