下载PDF或查看论文,请点击:
摘要
大型语言模型(LLMs)在推理方面展现出卓越的能力,例如OpenAI-o1和DeepSeek-R1的成功。然而,将推理与外部搜索过程相结合仍然具有挑战性,尤其是在需要多个检索步骤的复杂多跳问题中。我们提出了一种名为ReSearch的新框架,通过强化学习训练LLMs进行搜索推理,而不使用任何关于推理步骤的监督数据。我们的方法将搜索操作视为推理链的组成部分,何时以及如何进行搜索由基于文本的思考指导,而搜索结果随后影响进一步的推理。我们在Qwen2.5-7B(-Instruct)和Qwen2.5-32B(-Instruct)模型上训练了ReSearch,并进行了广泛的实验。尽管仅在一个数据集上进行了训练,但我们的模型在各种基准测试中表现出强大的泛化能力。分析显示,ReSearch在强化学习过程中自然地激发了高级推理能力,如反思和自我纠正。
一句话总结
本文提出了一种名为ReSearch的框架,通过强化学习训练大型语言模型(LLM)进行搜索辅助推理,从而提升LLM在复杂多跳问答任务中的表现。
问题1:这篇论文想要解决什么具体问题?
- 问题背景:现有的LLM在多步推理和搜索结合的复杂问题处理中存在挑战,尤其是对于需要多次检索步骤的多跳问题。
- 现有方案不足:现有的多步检索增强生成(RAG)方法大多依赖手动设计的提示或启发式方法,缺乏可扩展性,且难以标注推理步骤。
- 研究目标:提出ReSearch框架,通过强化学习训练LLM进行搜索辅助推理,无需任何关于推理步骤的监督数据。
问题2:论文的核心创新点是什么?
- 技术创新:将搜索操作视为推理链的组成部分,通过文本思维引导搜索时机和方式,并使搜索结果影响后续推理。
- 方法改进:采用强化学习(GRPO)训练LLM进行搜索辅助推理,无需标注数据。
- 优势:无需监督数据,能够自然地激发高级推理能力,如反思和自我纠正。
问题3:实验结果如何验证了方法的有效性?
- 关键实验:在多跳问答基准上进行实验,包括HotpotQA、2WikiMultiHopQA、MuSiQue和Bamboogle。
- 性能提升:ReSearch在所有基准上都取得了显著的性能提升,平均绝对改进范围从8.9%到22.4%。
- 对比结果:与基线方法相比,ReSearch在精确匹配和LLM-as-a-judge指标上均取得了显著改进。
问题4:这个研究的实际应用价值是什么?
- 应用场景:适用于需要复杂推理和搜索的领域,如问答系统、知识图谱和智能客服等。
- 实施建议:使用Qwen模型进行训练,并在实际应用中结合具体任务进行调整。
- 局限与展望:目前主要针对多跳问答任务,未来可扩展到更多领域,并探索引入更多类型的工具以增强LLM的推理能力。