ke1th 2018-02-11 13:47:04 42430 收藏 113
分类专栏: NLP pytorch deeplearning pytorch学习笔记
版权
文章部分翻译自 http://anie.me/On-Torchtext/
API一览
torchtext.data
torchtext.data.Example : 用来表示一个样本,数据+标签
torchtext.vocab.Vocab: 词汇表相关
torchtext.data.Datasets: 数据集类,__getitem__ 返回 Example实例
torchtext.data.Field : 用来定义字段的处理方法(文本字段,标签字段)
创建 Example时的 预处理
batch 时的一些处理操作。
torchtext.data.Iterator: 迭代器,用来生成 batch
torchtext.datasets: 包含了常见的数据集.
前言
Torchtext 是一个非常强有力的库,她可以帮助我们解决 文本的预处理问题。为了能够更好的利用这个工具,我们需要知道她可以做什么,不可以做什么,也要将每个API和其我们想要的做的事情联系起来。另外一个值得夸赞的一点是,Torchtext 不仅可以和 pytorch 一起用,还可以和其它深度学习框架(tf,mxnet,…)。
下面是 text 预处理的工作列表,打勾的代表 torchtext 已经支持的工作:
File Loading: 加载不同文件格式的 corpus
Tokenization: 将句子 分解成 词列表。
Vocab: 构建 当前 corpus 的词汇表
Numericalize/Indexify: 将 词 映射成 index
Word Vector: 词向量
Batching: generate batches of training sample (padding is normally happening here)
Train/Val/Test Split: seperate your data into a fixed train/val/test set (not used for k-fold validation)(这个需要手动划分)
Embedding Lookup: map each sentence (which contains word indices) to fixed dimension word vectors(这个可以使用 pytorch 的 Embedding Layer解决)
下面是对以上任务一个直观的表述:
"The quick fox jumped over a lazy dog."
-> (tokenization)
["The", "quick", "fox", "jumped", "over", "a", "lazy", "dog", "."]
-> (vocab)
{"The" -> 0,
"quick"-> 1,
"fox" -> 2,
...}
-> (numericalize/indexify)
[0, 1, 2, ...]
-> (embedding lookup)
[
[0.3, 0.2, 0.5],
[0.6, 0., 0.1],
...
]
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
这些过程非常容易搞砸,特别是 tokenization。研究者们经常花费大量的时间编写代码来处理这些问题。Torchtext 将这些常用的预处理操作整理起来,使得更加好用。
概览
TorchText 的数据预处理流程为:
定义样本的处理操作。—> torchtext.data.Field
加载 corpus (都是 string)—> torchtext.data.Datasets
在Datasets 中,torchtext 将 corpus 处理成一个个的 torchtext.data.Example 实例
创建 torchtext.data.Example 的时候,会调用 field.preprocess 方法
创建词汇表, 用来将 string token 转成 index —> field.build_vocab()
词汇表负责:string token ---> index, index ---> string token ,string token ---> word vector
将处理后的数据 进行 batch 操作。—> torchtext.data.Iterator
将 Datasets 中的数据 batch 化
其中会包含一些 pad 操作,保证一个 batch 中的 example 长度一致
在这里将 string token 转化成index。
tokenization,vocab, numericalize, embedding lookup 和 TorchText 数据预处理阶段的对应关系是:
tokenization —> Dataset 的构造函数中,由 Field 的 tokenize 操作
vocab —> field.build_vocab 时,由 Field 保存 映射关系
numericalize —> 发生在 iterator 准备 batch 的时候,由 Field 执行 numericalize 操作
embedding lookup —> 由 pytorch Embedding Layer 提供此功能。
一个简单例子
首先,我们要创建 Field 对象: 这个对象包含了我们打算如何预处理文本数据的信息。 她就像一个说明书。下面定义了两个 Field 对象。
import spacy
spacy_en = spacy.load('en')
def tokenizer(text): # create a tokenizer function
# 返回 a list of <class 'spacy.tokens.token.Token'>
return [tok.text for tok in spacy_en.tokenizer(text)]
TEXT = data.Field(sequential=True, tokenize=tokenizer, lower=True)
LABEL = data.Field(sequential=False, use_vocab=False)
1
2
3
4
5
6
7
8
9
如果LABEL是整型,不需要 numericalize , 就需要将 use_vocab=False. Torchtext 可能也会允许使用 text 作为 label,但是现在我还没有用到。
然后我们可以通过 torchtext.data.Dataset 的类方法 splits 加载所有的语料库:(假设我们有三个语料库,train.tsv, val.tsv, test.tsv)
train, val, test = data.TabularDataset.splits(
path='./data/', train='train.tsv',
validation='val.tsv', test='test.tsv', format='tsv',
fields=[('Text', TEXT), ('Label', LABEL)])
1
2
3
4
然后构建语料库的 Vocabulary, 同时,加载预训练的 word-embedding
TEXT.build_vocab(train, vectors="glove.6B.100d")
1
我们可以直接传一个 string,然后后端会下载 word vectors 并且加载她。我们也可以通过 vocab.Vectors 使用自定义的 vectors.
下一步将要进行 batching 操作:用 torchtext 提供的 API 来创建一个 iterator
train_iter, val_iter, test_iter = data.Iterator.splits(
(train, val, test), sort_key=lambda x: len(x.Text),
batch_sizes=(32, 256, 256), device=-1)
batch = next(iter(train_iter))
print("batch text: ", batch.Text) # 对应 Fileld 的 name
print("batch label: ", batch.Label)
1
2
3
4
5
6
7
需要注意的是,如果您要运行在 CPU 上,需要设置 device=-1, 如果运行在GPU 上,需要设置device=0 。您可以很容易的检查 batch 后的结果,同时会发现,torchtext 使用了动态 padding,意味着 batch内的所有句子会 pad 成 batch 内最长的句子长度。
batch.Text 和 batch.Label 都是 torch.LongTensor 类型的值,保存的是 index 。
如果我们想获得 word vector,应该怎么办呢?
Field 的 vocab 属性保存了 word vector 数据,我们可以把这些数据拿出来
然后我们使用 Pytorch 的 Embedding Layer 来解决 embedding lookup 问题。
vocab = TEXT.vocab
self.embed = nn.Embedding(len(vocab), emb_dim)
self.embed.weight.data.copy_(vocab.vectors)
1
2
3
Field, Vocab, Vectors
为什么使用 Field 抽象:
torchtext 认为一个样本是由多个字段(文本字段,标签字段)组成,不同的字段可能会有不同的处理方式,所以才会有 Field 抽象。
Field: 定义对应字段的处理操作
Vocab: 定义了 词汇表
Vectors: 用来保存预训练好的 word vectors
所以,
TEXT.build_vocab(train, vectors="glove.6B.100d")
1
的解释为: 从预训练的 vectors 中,将当前 corpus 词汇表的词向量抽取出来,构成当前 corpus 的 Vocab(词汇表)。
其它
希望迭代器返回固定长度的文本
设置 Field 的 fix_length 属性
在创建字典时, 希望仅仅保存出现频率最高的 k 个单词
在 .build_vocab 时使用 max_size 参数指定
如何指定 Vector 缺失值的初始化方式
vector.unk_init = init.xavier_uniform 这种方式指定完再传入 build_vocab
inference
在推断的时候掌握Field的两个接口即可
Field.preprocess(self, x)
# x:文本 string,此api会对 string 进行 tokenization,返回的是 token list
Field.process(self, batch, device=None)
# batch: list of token list,此API会执行,padding,numericalization 操作。返回的是 idx-tensor。
1
2
3
4
参考资料
http://mlexplained.com/2018/02/08/a-comprehensive-tutorial-to-torchtext/
http://anie.me/On-Torchtext/
————————————————
版权声明:本文为CSDN博主「ke1th」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/u012436149/article/details/79310176