大模型日报2024-06-19

大模型日报

2024-06-19

大模型资讯

大模型产品

  1. SiteForge - AI网站生成器

  • 摘要: 通过AI生成线框、网站规划和品牌内容,SiteForge帮助小企业和营销团队在几分钟内创建SEO优化网站,节省上千美元。

  1. Summit: 你的AI生活教练

  • 摘要: Summit是一款AI生活教练应用,帮助你组织和跟踪目标,提供24/7支持,适用于iOS和Android。

  1. VidAU:批量生成多语言视频

  • 摘要: VidAU让您通过产品链接或描述,快速生成带有多语言和口音的逼真头像视频,并提供换脸、翻译等编辑功能。

  1. Olvy 3.0:AI加速客户反馈分析

  • 摘要: 推出Olvy 3.0!AI自动监听捕捉真实反馈,AI智能填充标签。通过Google Meet集成轻松提取洞察,贴近客户,激发共鸣,赋能你我。

  1. rnbw: 现代设计与代码编辑器

  • 摘要: rnbw🌈是一款现代设计和代码编辑器,简单灵活,开源开放,支持AI,完全遵循开放网络标准。

  1. Genspark:革新搜索的AI代理引擎

  • 摘要: Genspark通过专门的AI代理生成无偏见的Sparkpages,提供可信信息,节省用户时间,优化搜索体验。

  1. Warp AI代理模式:用英语完成开发任务

  • 摘要: 在Warp AI中启用代理模式,通过自然语言在终端执行开发任务。代理模式可自我纠错并学习任何CLI。

大模型论文

  1. LLaNA: 基于NeRF的多模态语言助手

  • 摘要: LLaNA利用NeRF权重直接提取对象信息,实现NeRF字幕生成和问答等任务,构建无人工干预的数据集和评估基准。

  1. mDPO: 多模态大语言模型的条件偏好优化

  • 摘要: mDPO通过优化图像偏好和引入奖励锚点,解决多模态偏好优化中的无条件偏好问题,显著提升模型性能。

  1. MMDU: 多轮多图对话理解基准与指令微调数据集

  • 摘要: MMDU是一个评估和改进大型视觉语言模型在多轮多图对话中的能力的综合基准和大规模指令微调数据集。

  1. EVE: 无编码器的视觉语言模型

  • 摘要: 本文提出EVE,一种无编码器的视觉语言模型,通过统一解码器和额外监督实现高效训练,性能优于同类模型。

  1. 大语言模型在扩散模型中的提示编码角色

  • 摘要: 本文提出了一种新框架,解决大语言模型在文本到图像扩散模型中提示编码的两大问题,显著提升了性能。

  1. WPO: 加权偏好优化提升RLHF效果

  • 摘要: 提出加权偏好优化方法,通过重新加权偏好对,模拟在线学习,解决分布差异问题,优化效果优于DPO。

  1. 高效视觉语言助手的优化设计研究

  • 摘要: 研究通过优化数据集、视觉模块和监督技术,在保持高性能的同时,显著提升推理效率,并提供开源代码、模型和数据集。

  1. 未知环境中具身指令跟随方法

  • 摘要: 提出一种具身指令跟随方法,通过高层任务规划和低层探索控制,实现未知环境中复杂任务的高效完成,成功率达45.09%。

  1. VideoLLM在线:流媒体视频大模型

  • 摘要: 提出LIVE框架,实现连续视频流的实时对话,基于Llama-2/3,支持5分钟视频流对话,性能优越。

  1. LLARVA: 提升机器人学习的视觉-动作指令调优

  • 摘要: LLARVA通过结构化提示和视觉痕迹预测,统一多种机器人学习任务,表现优于现有基线模型,并能在不同环境中泛化。

大模型开源项目

  1. 增强版ChatGPT克隆项目

  • 摘要: 一个完全开源的ChatGPT克隆项目,支持多种AI模型切换、消息搜索、插件等功能,适用于自托管。

  1. Lobe Chat: 开源现代AI聊天框架

  • 摘要: Lobe Chat是一个开源的现代AI聊天框架,支持多AI提供商和多模态,提供一键免费部署私人ChatGPT应用。

  1. Vanna AI:与SQL数据库聊天

  • 摘要: Vanna AI使用RAG技术,通过LLMs实现精准的文本到SQL生成,支持Python编写,方便与SQL数据库进行交互。

  1. 基于深度神经网络的语音去除工具

  • 摘要: Anjok07开发的Python项目,提供一个语音去除工具的图形用户界面,利用深度神经网络实现语音分离。

  1. AI副业赚钱指南

  • 摘要: 探索如何利用AI技术开展副业项目,轻松赚取额外收入。提供详细方法和实用技巧,助你实现财务自由。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值