大模型日报
2024-07-23
大模型资讯
-
摘要: 斯坦福大学的研究致力于通过心智理论和大型语言模型,开发能够在复杂社会环境中自适应运行的自主智能体,推动多智能体强化学习的发展。
-
摘要: 该国首个多功能人工智能模型能够检查超过20个人体器官的医学影像,展示了其在癌症诊断中的巨大潜力。
-
摘要: Arcee AI推出了全新的开源语言模型Arcee-Nova,该模型基于Qwen2-72B开发,性能接近GPT-4。这一突破将为自然语言处理领域带来新的可能性和应用前景。
-
摘要: NavGPT-2通过将大型语言模型(LLM)与导航策略网络(VLN)相结合,提升智能代理的性能。LLM在处理文本数据方面表现出色,而VLN主要涉及视觉信息。有效结合这两种模式需要新的方法和技术。
-
摘要: 大型语言模型可能在医学考试中表现出色,但目前将其用于诊断仍然是严重的失职行为。
-
摘要: 大型语言模型(LLMs)在自然语言处理领域引发了革命,展示了在各种应用中的显著能力。本文综述了从RAG到ReST的先进技术,探讨了LLMs的发展历程和最新进展。
-
摘要: 腾讯AI团队引入补丁级训练方法,通过将多个标记压缩成一个补丁,减少序列长度。这一方法应对了大语言模型所需的海量训练数据,同时提升了模型的能力。
-
摘要: 大型语言模型(LLMs)在执行各种任务时表现出色,但小型语言模型也有其独特的优势。它们可能在某些情况下提供更高效和更具针对性的解决方案。
-
摘要: 本地医生与国内外专家合作,开发出一种创新系统,将语言和图像人工智能相结合,以更好地管理糖尿病。这一系统有望提高糖尿病患者的生活质量和治疗效果。
-
摘要: 加拿大AI独角兽Cohere在新一轮融资中估值达到55亿美元。尽管该公司没有流行的聊天机器人,但已签约了数百家企业客户。
大模型产品
-
摘要: Supermemory帮助你整理和利用收藏的网络书签,提供搜索引擎、写作助手和画布等功能,让信息更有价值。
-
摘要: Reactor Chat AI,ARC的杰作,胜过GPT4o。反应迅速,环保,每次响应仅耗0.5W,致力于提供准确有价值的答案。
-
摘要: 通过WhatsApp、邮件和短信实现个性化、可扩展的自动化营销,Zixflow为您带来卓越的客户体验。
-
摘要: Vozo让用户通过提示词重写、重配音、编辑语音和唇同步,将经典视频变为宣传片、普通视频变为喜剧,甚至实现多语言转换。
-
摘要: 通过实时互动面试,涵盖技术、编码和电话筛选。AI确保流程一致公平,并生成定制报告,助力自信招聘决策。
-
摘要: 使用AutoAE,几秒内生成爆款视频开头。像顶级YouTuber一样发布内容,加速你的成长,不再受限于CapCut。
-
摘要: Gobi是一个高质量的健康指导员,能实时生成基于科学的语音指导,满足你的情感健康需求。
-
摘要: Shaped提供可配置的实时推荐和搜索,助您提升用户参与度、转化率和收入,打造个性化体验。
-
摘要: UseShorts是一款自动工具,将您的YouTube视频转换为引人入胜的Shorts,并每日自动发布。
-
摘要: 将学习笔记转化为互动测验。导入笔记,秒生成练习题。获取答案反馈,分享测验给朋友和同学。免费注册!
大模型论文
-
摘要: 本文总结了大语言模型的一致性理论框架,并提出自反馈框架,系统分类相关研究,探讨自反馈有效性及未来研究方向。
-
摘要: 本文提出CHOPINLLM,通过结合原始数据值和文本表示进行预训练和微调,提高多模态语言模型对图表的理解能力,并建立新的评估基准。
-
摘要: ViLLa通过融合多模态大语言模型,实现复杂文本查询下的视频推理分割,并构建了推理视频分割基准。
-
摘要: 本文研究大语言模型自解释的可靠性,发现反事实解释能生成真实、信息丰富且易验证的结果,提供传统解释方法的替代方案。
-
摘要: 介绍了基于Llama3的ChatQA 2模型,通过扩展上下文窗口和指令微调,实现与GPT-4-Turbo相当的长文本理解和RAG性能。
-
摘要: 提出了一种基于反事实解释的放射报告生成框架CoFE,通过对比事实和反事实图像表示,生成语义连贯且事实完整的报告。
-
摘要: Check-Eval通过生成和评估检查表来评估文本质量,在两个基准数据集上表现优于现有指标,代码已公开。
-
摘要: 本文探讨了AI系统虽然简化了决策过程,但却可能在低信任环境中削弱合作的效果,并引入了“心理证明”的概念。
-
摘要: 提出一种基于Token相关性的无参压缩方法,通过识别冗余Token和采样最具信息量的Token,提升文档理解效率。
-
摘要: 提出了一种通过部分量化专家来高效部署大规模专家混合模型的方法,在多租户环境中动态调整吞吐量和模型质量。
大模型开源项目
-
摘要: mem0ai是一个用Python编写的项目,旨在为个性化人工智能提供记忆层,提升AI的个性化能力。
-
摘要: ComposioHQ使用Python编写,为代理提供精良工具,助力解决复杂任务,提升工作效率。
-
摘要: Mozilla-Ocho项目使用C++编写,实现了通过单个文件分发和运行大型语言模型(LLM),简化了部署和使用过程。
本文由 mdnice 多平台发布