大模型日报 2024-08-01

大模型日报

2024-08-01

大模型资讯

  1. Mistral AI发布多语言大型语言模型Mistral Large 2
  • 摘要: 2024年7月24日,Mistral AI宣布推出其下一代旗舰大型语言模型Mistral Large 2,该模型现已在IBM watsonx™平台上可用。Mistral Large 2是一款先进的多语言大型语言模型,旨在提升语言处理能力。
  1. Meta发布全球最大最强的开源AI模型Llama 3.1
  • 摘要: 科技巨头Meta宣布其最新的开源AI模型Llama 3.1具备'最先进的能力',被称为全球最大和最强的AI模型。
  1. 百度自我推理AI:终结语言模型“幻觉”
  • 摘要: 百度推出了一种新型自我推理AI框架,旨在提升语言模型的可靠性,有望消除语言模型中的“幻觉”现象。这一技术进展可能会为AI应用带来更高的准确性和可信度。
  1. 大型语言模型升级:更好、更快、更便宜
  • 摘要: Anton Korinek总结了大型语言模型(LLMs)的新发展,并展示了LLMs在经济研究中的最新应用案例。
  1. 新方法防止AI模型对错误答案过于自信
  • 摘要: 一种名为Thermometer的新校准技术专为大型语言模型设计,能够防止LLMs在回答问题时过于自信或缺乏自信。该方法有效提升了AI模型的回答准确性和可靠性。
  1. Lean Copilot: 用于Lean的AI工具实现定理证明自动化
  • 摘要: Lean Copilot是一种AI工具,使大语言模型(LLMs)能够在Lean中用于定理证明自动化。定理证明是形式化数学和计算机科学中的关键环节,但通常具有挑战性且耗时。
  1. rLLM:基于PyTorch的大型语言模型关系表学习库
  • 摘要: rLLM(relationLLM)是一个基于PyTorch设计的库,旨在利用大型语言模型进行关系表学习(RTL)。大型语言模型在人工智能领域展现了强大的能力。
  1. 大数据集对脑行为机器学习测试的重要性
  • 摘要: 在设计机器学习模型时,研究人员首先训练模型以识别数据模式,然后测试其有效性。为了有效测试脑行为机器学习模型,需要使用大规模的数据集。
  1. 在Mixtile Blade 3 NPU上运行大型语言模型
  • 摘要: 该项目旨在利用Rockchip NPU实现一个本地聊天机器人应用,运行大型语言模型(LLM)。
  1. AMD Instinct MI300X加速器提升大语言模型性能
  • 摘要: AMD的MI300X加速器具有高内存带宽和容量,能够提升大语言模型的性能和效率。

大模型产品

大模型论文

  1. ThinK: 基于查询的KV缓存剪枝方法
  • 摘要: ThinK通过剪枝KV缓存中的冗余通道,在不损失精度的情况下减少超过20%的内存消耗,有效提升LLM推理效率。
  1. CLEFT:高效语言图像对比学习方法
  • 摘要: CLEFT方法利用高效大语言模型及提示微调,显著减少训练资源需求,并在多项医学影像数据集上表现出色。
  1. 技术债务的双刃剑:开发者讨论分析
  • 摘要: 本研究通过分析2,213篇论坛帖子和文章,识别了技术债务相关的8个主要话题和43个子话题,探讨了开发者的正负面观点。
  1. MoFO:缓解LLM微调遗忘的动量过滤优化器
  • 摘要: 提出MoFO算法,通过选择动量较大的参数更新,避免知识遗忘,无需预训练数据且不改变损失函数。
  1. 利用LLM和RAG生成自然语言解释
  • 摘要: 本文提出了一种基于LLM和外部知识库的可追溯问答方法,通过减法反事实推理计算特征重要性,生成自然语言解释。
  1. 边缘物联网语义通信中的大语言模型
  • 摘要: 文章概述了在边缘物联网网络中使用大语言模型进行语义通信的框架,讨论了应用、挑战和机遇。
  1. MMTrail: 多模态预告片视频数据集
  • 摘要: MMTrail是一个包含超过20M预告片视频和多模态描述的大规模数据集,支持精细化多模态语言模型训练。
  1. 基于LLM的自动化文献综述生成方法
  • 摘要: 提出一种基于大语言模型的自动化文献综述生成方法,显著减少认知负荷,验证在丙烷脱氢催化剂上的应用效果。
  1. ThinkRepair: 自主自动程序修复
  • 摘要: ThinkRepair通过自我指导的LLM,分为收集和修复两个阶段,有效提升了程序修复性能,显著超越现有方法。
  1. 情感分析网络的有效黑盒测试方法
  • 摘要: 本文提出了一种针对Transformer情感分析网络的覆盖标准,利用k投影覆盖度量生成测试案例,实验表明测试覆盖率提高16%,模型准确率下降6.5%。

大模型开源项目

  1. Qlib: AI量化投资平台
  • 摘要: Qlib是一个AI量化投资平台,支持多种机器学习模型,从研究到生产实现价值。

本文由 mdnice 多平台发布

数据中心机房是现代信息技术的核心设施,它承载着企业的重要数据和服务,因此,其基础设计与规划至关重要。在制定这样的方案时,需要考虑的因素繁多,包括但不限于以下几点: 1. **容量规划**:必须根据业务需求预测未来几年的数据处理和存储需求,合理规划机房的规模和设备容量。这涉及到服务器的数量、存储设备的容量以及网络带宽的需求等。 2. **电力供应**:数据中心是能源消耗大户,因此电力供应设计是关键。要考虑不间断电源(UPS)、备用发电机的容量,以及高效节能的电力分配系统,确保电力的稳定供应并降低能耗。 3. **冷却系统**:由于设备密集运行,散热问题不容忽视。合理的空调布局和冷却系统设计可以有效控制机房温度,避免设备过热引发故障。 4. **物理安全**:包括防火、防盗、防震、防潮等措施。需要设计防火分区、安装烟雾探测和自动灭火系统,设置访问控制系统,确保只有授权人员能进入。 5. **网络架构**:规划高速、稳定、冗余的网络架构,考虑使用光纤、以太网等技术,构建层次化网络,保证数据传输的高效性和安全性。 6. **运维管理**:设计易于管理和维护的IT基础设施,例如模块化设计便于扩展,集中监控系统可以实时查看设备状态,及时发现并解决问题。 7. **绿色数据中心**:随着环保意识的提升,绿色数据中心成为趋势。采用节能设备,利用自然冷源,以及优化能源管理策略,实现低能耗和低碳排放。 8. **灾难恢复**:考虑备份和恢复策略,建立异地灾备中心,确保在主数据中心发生故障时,业务能够快速恢复。 9. **法规遵从**:需遵循国家和地区的相关法律法规,如信息安全、数据保护和环境保护等,确保数据中心的合法运营。 10. **扩展性**:设计时应考虑到未来的业务发展和技术进步,保证机房有充足的扩展空间和升级能力。 技术创新在数据中心机房基础设计及规划方案中扮演了重要角色。例如,采用虚拟化技术可以提高硬件资源利用率,软件定义网络(SDN)提供更灵活的网络管理,人工智能和机器学习则有助于优化能源管理和故障预测。 总结来说,一个完整且高效的数据中心机房设计及规划方案,不仅需要满足当前的技术需求和业务目标,还需要具备前瞻性和可持续性,以适应快速变化的IT环境和未来可能的技术革新。同时,也要注重经济效益,平衡投资成本与长期运营成本,实现数据中心的高效、安全和绿色运行。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值