计算机视觉呼吸频率检测

视频检测呼吸频率

  • 从视频中提取帧并定义ROI区域。
  • 计算ROI中的运动幅度。
  • 基于运动幅度检测呼吸频率。
import cv2
import numpy as np
from scipy.ndimage import gaussian_filter1d
from scipy.signal import find_peaks
import matplotlib.pyplot as plt

def preprocess_and_detect_motion(video_path, initial_roi=(676, 485, 296, 315)):
    cap = cv2.VideoCapture(video_path)
    if not cap.isOpened():
        raise ValueError("无法打开视频文件,请检查路径是否正确")
    
    fps = cap.get(cv2.CAP_PROP_FPS)
    if fps is None or fps <= 0:
        raise ValueError("无法获取视频的帧率,请检查视频文件")

    ret, frame = cap.read()
    if not ret:
        raise ValueError("无法读取视频帧,请检查视频文件")

    # 初始化 ROI
    x_start, y_start, width, height = initial_roi
    movements = []
    prev_roi_frame = None

    while cap.isOpened():
        ret, frame = cap.read()
        if not ret:
            break
        
        # 转换为灰度图像并提取 ROI 区域
        gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
        roi_frame = gray[y_start:y_start+height, x_start:x_start+width]
        
        if prev_roi_frame is not None:
            # 确保 ROI 大小匹配
            if prev_roi_frame.shape == roi_frame.shape:
                diff = cv2.absdiff(prev_roi_frame, roi_frame)
                movement = np.mean(diff)
                movements.append(movement)
        
        prev_roi_frame = roi_frame

    cap.release()
    return movements, fps

def calculate_breathing_rate(movements, fps):
    if len(movements) == 0:
        return 0
    
    # 平滑数据
    smooth_movements = gaussian_filter1d(movements, sigma=1)
    peaks, _ = find_peaks(smooth_movements, distance=fps / 3)
    breath_rate = len(peaks) / (len(smooth_movements) / fps / 60)
    
    # 可视化
    time_axis = np.arange(len(smooth_movements)) / fps
    plt.plot(time_axis, smooth_movements, label='Smoothed Movement')
    plt.plot(time_axis[peaks], smooth_movements[peaks], "x", label='Breaths Detected')
    plt.title("Breathing Movement over Time")
    plt.xlabel("Time (s)")
    plt.ylabel("Smoothed Movement Amplitude")
    plt.legend()
    plt.show()
    
    return breath_rate

def main():
    video_path = 'Sow_fast_breathing.mp4'
    initial_roi = (676, 485, 296, 315)   # 替换为适当的ROI区域(x_start, y_start, width, height)
    
    movements, fps = preprocess_and_detect_motion(video_path, initial_roi)
    
    if movements:
        breath_rate = calculate_breathing_rate(movements, fps)
        print(f"Estimated Breathing Rate: {breath_rate:.2f} breaths per minute")
    else:
        print("未检测到任何运动")

if __name__ == "__main__":
    main()

可调整参数:sigma和distance。如sigma=0.5和distance=fps/4 以检测到更多的峰值

手动选择ROI区域

import cv2

video_path = 'Sow_fast_breathing.mp4'
cap = cv2.VideoCapture(video_path)
ret, frame = cap.read()
if ret:
    roi = cv2.selectROI("Select ROI", frame, fromCenter=False, showCrosshair=True)
    cv2.destroyAllWindows()
    print("Selected ROI:", roi)  # 输出格式为 (x, y, width, height)
cap.release()

具体结果如下:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值