pandas之pivot_table()

这是一个强大的函数,要掌握它也不是一件容易的事情,慢慢来吧,今天只把一部分内容作为记录,边用边补充吧!
pivot_table是以交叉表的形式对两个或两个以上的变量进行对比分析。
交叉计数函数及参数:

pivot_table(data, values=None, index=None, columns=None, aggfunc=’mean’, fill_value=None, margins=False, dropna=True, margins_name=’All’)
data: DataFrame对象 
values: 数据透视表中的值
index: 索引 
aggfunc:所用的统计函数
fill_value:默认值替换

举例:
在这里插入图片描述
该代码所用数据是Titanic数据集,Pclass是等级;Survived代表是否存活,取值为0和1,最终得到不同等级平均存活。
在这里插入图片描述
最终得到不同等级平均年龄。
在这里插入图片描述
最终得到不同登船码头下总船票与总获救人数。

### 回答1: Pandaspivot_table 是一个用于创建二维表格的函数,它可以根据一个或多个键将数据分组,并计算每组数据的某个。它可以自动根据键分组数据,并计算每组数据的某个,例如平均、总和、计数等。pivot_table还支持自定义聚合函数,允许更灵活的数据处理。 ### 回答2: pandaspivot_table是一种用于数据透视的功能。它可以将一个DataFrame中的数据按照给定的索引、列和value进行重排和聚合,从而创建一个新的DataFrame。 pivot_table函数的常见参数包括index,用于指定要作为新表索引的列;columns,用于指定要作为新表列的列;values,用于指定要聚合的列;aggfunc,用于指定聚合函数。pivot_table还有其他可选参数,如fill_value、margins等。 具体而言,pivot_table会将上述参数指定的列的作为新表的索引和列,并在新表中聚合指定的数据列的。例如,如果我们有一个包含销售数据的DataFrame,其中包含销售人员、产品、销售额和销售数量等信息,则可以使用pivot_table来生成一个新的表格,其中行为销售人员,列为产品,为销售额或销售数量,以便更好地了解不同销售人员销售不同产品的情况。 pivot_table还支持多级索引和列,这意味着可以根据多个列的对数据进行分组和聚合。 总之,pandaspivot_table是一个强大且灵活的功能,可以根据需要将数据重排和聚合,帮助我们更好地理解数据的结构和趋势,从而支持更好的数据分析和决策。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值