给你一个二叉树,请你返回其按 层序遍历 得到的节点值。 (即逐层地,从左到右访问所有节点)。
示例:
二叉树:[3,9,20,null,null,15,7],
3
/ \
9 20
/ \
15 7
返回其层次遍历结果:
[
[3],
[9,20],
[15,7]
]
从上到下打印二叉树用队列可以实现,但是如果多行打印需要在行与行之间进行分割。如何分割呢?肯定要知道个数才能分割。又如何知道这一行有多少个呢?我们可以通过遍历上一层,通过它们的子树就可以知道这一层有多少个节点了,所以需要一个变量记录下一层节点的数目。还需要有一个变量来记录这一层已经打印了多少个节点了。所以我们需要一个队列+两个变量。
/**
* Definition for a binary tree node.
* function TreeNode(val) {
* this.val = val;
* this.left = this.right = null;
* }
*/
/**
* @param {TreeNode} root
* @return {number[][]}
*/
var levelOrder = function(root) {
let res = [];
let queue = [];
//利用队列先进先出的特点
if(root === null) return res;
//先将根结点入队
queue.push(root);
let count = 0;//下一层节点个数
let toBePrint = 1;//该层还有多少节点需要打印
//当队列不为空时,队头出队,每出队一个节点,都将他的左右子节点入队
let list = [];//存放每一层节点
while(queue.length){
let node = queue.shift();
list.push(node.val);
if(node.left !== null) {
queue.push(node.left);
count++;
}
if(node.right !== null){
queue.push(node.right);
count++;
}
toBePrint--;
if(toBePrint == 0){
res.push(list);
list = [];
toBePrint = count;
count = 0;
}
}
return res;
};
复杂度分析
记树上所有节点的个数为 n。
时间复杂度:每个点进队出队各一次,故渐进时间复杂度为 O(n)。
空间复杂度:队列中元素的个数不超过 nn 个,故渐进空间复杂度为 O(n)。