Deep Learning|神经网络原理学习笔记(5) :随机梯度下降算法SGD(附手绘图)、离线学习与在线学习

本文介绍了神经网络中梯度下降算法的原理,探讨了在大量样本时训练过程中的问题,并详细阐述了随机梯度下降(SGD)算法,包括mini-batch的概念和权重更新规则,以及离线学习与在线学习的区别。通过SGD,可以有效加速学习过程并减少计算量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

快开学了,今天一天都静不下心。不如趁着美好的黄昏来更一篇叭。(写了整整一晚上也是没谁了)

惯例推音乐:今天是一首温柔的迷幻摇滚,我正在摇头晃脑的写
希望听到这首歌的盆友们也能摇头晃脑的看完这篇博客(´^`)
歌手:椅子乐团 The Chairs
歌名:Rollin’ On

在这里插入图片描述
❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤分割线

1.真实模型的梯度更新规则

在上一篇里我们说到如何用 v v v来代替所有自变量,那么用 v v v表示的模型看懂了,我们就可以把男女主角权重 w w w和偏置 b b b换上场了。还记得上次的式子吗?
在这里插入图片描述
我们将这个式子描述为位置变量 v v v的变化,现在将位置变量 v j v_{j} vj分解为两个分量,即 w k w_{k} wk b l b_{l} bl
因此梯度向量 ▽ C \bigtriangledown C C也就有了相应的分量,即 ∂ C / ∂ w k \partial C/\partial w_{k} C/wk ∂ C / ∂ b l \partial C/\partial b_{l}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值