NLP理论基础和实践task-05循环和递归神经网络

一、RNN的结构

循环神经网络(Recurrent Neural Network,RNN)DNN以及CNN在对样本提取特征的时候,样本与样本之间是独立的,而有些情况是无法把每个输入的样本都看作是独立的,比如NLP中的此行标注问题,ASR中每个音素都和前一个音素是相关的,这类问题可以看做一种带有时序序列的问题,无法将样本看做是相互独立的,因此单纯的DNN和CNN解决这类问题就比较棘手。此时RNN就是一种解决这类问题很好的模型。
在这里插入图片描述
由上图可以看出,RNN的结构是一个重复的过程,且权重W,U,V是共享的,这也是借鉴了CNN的思想,可以减少参数量,从而减少计算的复杂度。第t时刻隐藏层的输出需要t-1时刻的隐藏层的输出,RNN以此来实现信息的传递。
这是一个标准的RNN结构图,图中每个箭头代表做一次变换,也就是说箭头连接带有权值。左侧是折叠起来的样子,右侧是展开的样子,左侧中h旁边的箭头代表此结构中的“循环“体现在隐层。
在展开结构中我们可以观察到,在标准的RNN结构中,隐层的神经元之间也是带有权值的。也就是说,随着序列的不断推进,前面的隐层将会影响后面的隐层。图中O代表输出,y代表样本给出的确定值,L代表损失函数,我们可以看到,“损失“也是随着序列的推荐而不断积累的。
除上述特点之外,标准RNN的还有以下特点:
1、权值共享,图中的W全是相同的,U和V也一样。
2、每一个输入值都只与它本身的那条路线建立权连接,不会和别的神经元连接。
RNN的反向传播
参考文献 http://blog.sina.com.cn/s/blog_6e32babb0102y3u7.html

二、递归神经网络

递归神经网络(recursive neural network)是具有树状阶层结构且网络节点按其连接顺序对输入信息进行递归的人工神经网络(Artificial Neural Network, ANN),是深度学习(deep learning)算法之一。
在这里插入图片描述
参考文献 https://blog.csdn.net/Luzichang/article/details/91344539

三、LSTM、GRU

参考文献 https://blog.csdn.net/zhangbaoanhadoop/article/details/81952284
long short term memory,即我们所称呼的LSTM,是为了解决长期以来问题而专门设计出来的,所有的RNN都具有一种重复神经网络模块的链式形式。在标准RNN中,这个重复的结构模块只有一个非常简单的结构,例如一个tanh层。LSTM的结构如下图:
在这里插入图片描述
 GRU是LSTM网络的一种效果很好的变体,它较LSTM网络的结构更加简单,而且效果也很好,因此也是当前非常流形的一种网络。GRU既然是LSTM的变体,因此也是可以解决RNN网络中的长依赖问题。

在LSTM中引入了三个门函数:输入门、遗忘门和输出门来控制输入值、记忆值和输出值。而在GRU模型中只有两个门:分别是更新门和重置门。具体结构如下图所示:
  在这里插入图片描述
  图中的zt和rt分别表示更新门和重置门。更新门用于控制前一时刻的状态信息被带入到当前状态中的程度,更新门的值越大说明前一时刻的状态信息带入越多。重置门控制前一状态有多少信息被写入到当前的候选集 htht 上,重置门越小,前一状态的信息被写入的越少。

四、Text-RNN的原理

CNN的核心点在于可以捕获信息的局部相关性,具体到文本分类任务中可以利用CNN来提取句子中类似N-Gram的关键信息。
在这里插入图片描述
[1]一维卷积:使用不同尺寸的kernel_size来模拟语言模型中的N-Gram,提取句子中的信息。即TextCNN中的卷积用的是一维卷积,通过不同kernel_size的滤波器获取不同宽度的视野。
[2]词向量:static的方式采用预训练的词向量,训练过程不更新词向量,本质就是迁移学习,主要用于数据量比较小的情况。not-static的方式是在训练过程中更新词向量。推荐的方式是not-static的fine-tunning方式,它是以预训练的词向量进行初始化,训练过程中调整词向量。在工程实践中,通常使用字嵌入的方式也能得到非常不错的效果,这样就避免了中文分词。
[3]最大池化:TextCNN中的池化保留的是Top-1最大信息,但是可能保留Top-K最大信息更有意义。比如,在情感分析场景中,“我觉得这个地方景色还不错,但是人也实在太多了”,这句话前半部分表达的情感是正向的,后半部分表达的情感是负向的,显然保留Top-K最大信息能够很好的捕获这类信息。
2、TextCNN原理
TextCNN擅长捕获更短的序列信息,但是TextRNN擅长捕获更长的序列信息。具体到文本分类任务中,BiLSTM从某种意义上可以理解为可以捕获变长且双向的N-Gram信息。
在这里插入图片描述
将CNN和RNN用在文本分类中都能取得显著的效果,但是有一个不错的地方就是可解释性不好,特别是去分析错误案例的时候,而注意力机制[Attention]能够很好的给出每个词对结果的贡献程度,已经成为Seq2Seq模型的标配,实际上文本分类也可以理解为一种特殊的Seq2Seq模型。因此,注意力机制的引入,可以在某种程度上提高深度学习文本分类模型的可解释性。

五、利用Text-RNN模型来进行文本分类

参考文献: https://blog.csdn.net/tcx1992/article/details/78194384
基于LSTM(Long-Short Term Memory,长短时记忆人工神经网络,RNN的一种)搭建一个文本意图分类的深度学习模型(基于Python3和Tensorflow1.2),其结构图如下:
在这里插入图片描述

六、RCNN原理

参考文献 https://blog.csdn.net/xyfengbo/article/details/70227173
RCNN(Regions with CNN features)是将CNN方法应用到目标检测问题上的一个里程碑,由年轻有为的RBG大神提出,借助CNN良好的特征提取和分类性能,通过RegionProposal方法实现目标检测问题的转化。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值