python
data_dog
创业是不可能创业了,考公又难,只能学一手数据分析打打工了,数据工程师超厉害的,说话又好听,人又实在,我超喜欢的。
展开
-
python浅复制与深复制
浅复制:1、‘=’浅复制b = a改变b的值,a也会发生相同的变化import copy2、copy.copy()浅复制或a.copy()b = copy.copy(a)b = a.copy()如果a 的形式如[1,2,3,4,[5,6]]改变b的1,2,3的值,不会影响a的值,但是改变[5,6]的值,就是相应的改变a内[5,6]的值。深复制b = co...原创 2018-07-30 15:16:30 · 225 阅读 · 0 评论 -
python 关联规则算法 apriori实现
#-*- coding: utf-8 -*-from __future__ import print_functionimport pandas as pd#自定义连接函数,用于实现L_{k-1}到C_k的连接def connect_string(x, ms): x = list(map(lambda i:sorted(i.split(ms)), x)) l = len(x[0...转载 2018-08-03 20:23:21 · 908 阅读 · 0 评论 -
sklearn的pca降维
data = pd.read_excel(r'C:\Users\Administrator\Desktop\principal_component.xls',header = None)from sklearn.decomposition import PCApca = PCA()#默认不输入n_components时,n_components=min(样本数,特征数)pca.fit(d...原创 2018-07-30 16:43:09 · 344 阅读 · 0 评论 -
keras做分类
data = pd.read_excel(r'C:\Users\Administrator\Desktop\sales_data.xls',index_col = '序号')data['天气']= data['天气'].map({'坏':0,'好':1})data['是否周末'] = data['是否周末'].map({'是':1,'否':0})data['是否有促销'] = data[...原创 2018-07-30 19:18:19 · 526 阅读 · 2 评论 -
tsne降维可视化
import matplotlib.pyplot as pltfrom sklearn.manifold import TSNEtsne = TSNE()tsne.fit_transform(data_scale)tsne = pd.DataFrame(tsne.embedding_,index = data_scale.index)#tsne.embedding_即降维后的二维数据...原创 2018-07-31 14:10:22 · 4239 阅读 · 0 评论 -
python时间序列(ARIMA)分析步骤
data = pd.read_excel(r'C:\Users\Administrator\Desktop\arima_data.xls',index_col = '日期')data.plot()单调递增的,不平稳单位根检验下from statsmodels.tsa.stattools import adfuller as ADFADF(data['销量'])>...原创 2018-07-31 15:57:37 · 13112 阅读 · 8 评论 -
聚类检测异常点
主要思想:用聚类方式划分数据为不同的簇,计算簇内每个点对于簇中心的相对距离(相对距离 = 点到簇中心的距离/这个簇所有点到簇中心距离的中位数),可视化后,检测出相对距离较大的点。注意是每个点到簇中心的距离的中位数,不是平均值,因为异常值对中位数的影响很小,几乎可以忽略,但是对均值的影响很大。 from sklearn import preprocessingfrom sklea...原创 2018-07-31 18:40:18 · 8686 阅读 · 3 评论