给你一个由一些多米诺骨牌组成的列表 dominoes。
如果其中某一张多米诺骨牌可以通过旋转 0 度或 180 度得到另一张多米诺骨牌,我们就认为这两张牌是等价的。
形式上,dominoes[i] = [a, b] 和 dominoes[j] = [c, d] 等价的前提是 a==c 且 b==d,或是 a==d 且 b==c。
在 0 <= i < j < dominoes.length 的前提下,找出满足 dominoes[i] 和 dominoes[j] 等价的骨牌对 (i, j) 的数量。
示例:
输入:dominoes = [[1,2],[2,1],[3,4],[5,6]]
输出:1
提示:
1 <= dominoes.length <= 40000
1 <= dominoes[i][j] <= 9
基本思路:哈希表
- 1<=dominnoes[i][j]<=9,可以将domiinoes[i]映射到两位数上
-
C(n+1,2)=C(n,2)+n
int numEquivDominoPairs(vector<vector<int>>& dominoes) {
vector<int> freq(100,0);
int ans=0;
for(auto &p:dominoes){
if(p[0]>p[1])
swap(p[0],p[1]);
int pos=p[0]*10+p[1];
ans+=freq[pos]; //C(n+1,2)=C(n,2)+n;
freq[pos]++;
}
return ans;
}