Alice 和 Bob 共有一个无向图,其中包含 n 个节点和 3 种类型的边:
类型 1:只能由 Alice 遍历。
类型 2:只能由 Bob 遍历。
类型 3:Alice 和 Bob 都可以遍历。
给你一个数组 edges ,其中 edges[i] = [typei, ui, vi] 表示节点 ui 和 vi 之间存在类型为 typei 的双向边。请你在保证图仍能够被 Alice和 Bob 完全遍历的前提下,找出可以删除的最大边数。如果从任何节点开始,Alice 和 Bob 都可以到达所有其他节点,则认为图是可以完全遍历的。返回可以删除的最大边数,如果 Alice 和 Bob 无法完全遍历图,则返回 -1 。
示例 1:
输入:n = 4, edges = [[3,1,2],[3,2,3],[1,1,3],[1,2,4],[1,1,2],[2,3,4]]
输出:2
解释:如果删除 [1,1,2] 和 [1,1,3] 这两条边,Alice 和 Bob 仍然可以完全遍历这个图。再删除任何其他的边都无法保证图可以完全遍历。所以可以删除的最大边数是 2 。
示例 2:
输入:n = 4, edges = [[3,1,2],[3,2,3],[1,1,4],[2,1,4]]
输出:0
解释:注意,删除任何一条边都会使 Alice 和 Bob 无法完全遍历这个图。
示例 3:
输入:n = 4, edges = [[3,2,3],[1,1,2],[2,3,4]]
输出:-1
解释:在当前图中,Alice 无法从其他节点到达节点 4 。类似地,Bob 也不能达到节点 1 。因此,图无法完全遍历。
提示:
1 <= n <= 10^5
1 <= edges.length <= min(10^5, 3 * n * (n-1) / 2)
edges[i].length == 3
1 <= edges[i][0] <= 3
1 <= edges[i][1] < edges[i][2] <= n
所有元组 (typei, ui, vi) 互不相同
基本思路:使用并查集来检验是否连通(count=1),先使用type3的边构建基本框架,再分别使用type1和type2检测是否连通;
- 为何先使用type3构建? alice 和bob一共使用的边数:f=(n-1)+(n-1)-k,其中k是共享边且k只能是type3类型的,而删除边数g=edges.size()-f=edges.size()-(n-1)*2+k,因此要尽量要k最大,所以要优先使用type3的边
class UF{
private:
vector<int> parent,psize;
int count=0;
public:
UF(int n){
parent.resize(n,0);
psize.resize(n,1);
for(int i=0;i<n;i++)
parent[i]=i;
count=n;
}
int find(int x){
return x==parent[x]?x:parent[x]=find(parent[x]);
}
bool connect(int x,int y){
x=x-1;
y=y-1;
int rx=find(x);
int ry=find(y);
if(rx==ry)
return false;
if(psize[rx]<psize[ry])
swap(rx,ry);
psize[rx]+=psize[ry];
parent[ry]=rx;
count--;
return true;
}
int getCount(){
return count;
}
};
class Solution {
public:
int maxNumEdgesToRemove(int n, vector<vector<int>>& edges) {
UF *u1=new UF(n);
UF *u2=new UF(n);
int k1=0,k2=0,k3=0;
for(auto &v:edges){
if(v[0]==3){
if(u1->connect(v[1],v[2])&&u2->connect(v[1],v[2]))
k3++;
}
}
for(auto &v:edges){
if(v[0]==1){
if(u1->connect(v[1],v[2]))
k1++;
}
if(v[0]==2){
if(u2->connect(v[1],v[2]))
k2++;
}
}
if(u1->getCount()==1&&u2->getCount()==1)
return edges.size()-k2-k1-k3;
return -1;
}
};
基本思路:思路同上,不过是使用了dfs,使用邻接表存储信息。