1579. 保证图可完全遍历

1579. 保证图可完全遍历

Alice 和 Bob 共有一个无向图,其中包含 n 个节点和 3  种类型的边:

类型 1:只能由 Alice 遍历。
类型 2:只能由 Bob 遍历。
类型 3:Alice 和 Bob 都可以遍历。
给你一个数组 edges ,其中 edges[i] = [typei, ui, vi] 表示节点 ui 和 vi 之间存在类型为 typei 的双向边。请你在保证图仍能够被 Alice和 Bob 完全遍历的前提下,找出可以删除的最大边数。如果从任何节点开始,Alice 和 Bob 都可以到达所有其他节点,则认为图是可以完全遍历的。

返回可以删除的最大边数,如果 Alice 和 Bob 无法完全遍历图,则返回 -1 。

 

示例 1:

输入:n = 4, edges = [[3,1,2],[3,2,3],[1,1,3],[1,2,4],[1,1,2],[2,3,4]]
输出:2
解释:如果删除 [1,1,2] 和 [1,1,3] 这两条边,Alice 和 Bob 仍然可以完全遍历这个图。再删除任何其他的边都无法保证图可以完全遍历。所以可以删除的最大边数是 2 。


示例 2:

输入:n = 4, edges = [[3,1,2],[3,2,3],[1,1,4],[2,1,4]]
输出:0
解释:注意,删除任何一条边都会使 Alice 和 Bob 无法完全遍历这个图。


示例 3:

输入:n = 4, edges = [[3,2,3],[1,1,2],[2,3,4]]
输出:-1
解释:在当前图中,Alice 无法从其他节点到达节点 4 。类似地,Bob 也不能达到节点 1 。因此,图无法完全遍历。
 

提示:

1 <= n <= 10^5
1 <= edges.length <= min(10^5, 3 * n * (n-1) / 2)
edges[i].length == 3
1 <= edges[i][0] <= 3
1 <= edges[i][1] < edges[i][2] <= n
所有元组 (typei, ui, vi) 互不相同


基本思路:使用并查集来检验是否连通(count=1),先使用type3的边构建基本框架,再分别使用type1和type2检测是否连通;

  • 为何先使用type3构建? alice 和bob一共使用的边数:f=(n-1)+(n-1)-k,其中k是共享边且k只能是type3类型的,而删除边数g=edges.size()-f=edges.size()-(n-1)*2+k,因此要尽量要k最大,所以要优先使用type3的边
class UF{
private:
    vector<int> parent,psize;
    int count=0;
public:
    UF(int n){
        parent.resize(n,0);
        psize.resize(n,1);
        for(int i=0;i<n;i++)
            parent[i]=i;
        count=n;
    }
    int find(int x){
        return x==parent[x]?x:parent[x]=find(parent[x]);
    }

    bool connect(int x,int y){
        x=x-1;
        y=y-1;
        int rx=find(x);
        int ry=find(y);
        if(rx==ry)
            return false;
        
        if(psize[rx]<psize[ry])
            swap(rx,ry);
        psize[rx]+=psize[ry];
        parent[ry]=rx;
        count--;
        return true;
    }
    int getCount(){
        return count;
    }
};
class Solution {
public:
    int maxNumEdgesToRemove(int n, vector<vector<int>>& edges) {
        UF *u1=new UF(n);
        UF *u2=new UF(n);
        int k1=0,k2=0,k3=0;
        for(auto &v:edges){
            if(v[0]==3){
                if(u1->connect(v[1],v[2])&&u2->connect(v[1],v[2]))
                    k3++;
            }
        }

        for(auto &v:edges){
            if(v[0]==1){
                if(u1->connect(v[1],v[2]))
                    k1++;
            }
            if(v[0]==2){
                if(u2->connect(v[1],v[2]))
                    k2++;
            }
        }
        if(u1->getCount()==1&&u2->getCount()==1)
            return edges.size()-k2-k1-k3;
        return -1;
    }
};

基本思路:思路同上,不过是使用了dfs,使用邻接表存储信息。

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值