from sklearn import svm
from sklearn.model_selection import train_test_split
from sklearn import metrics
from sklearn.preprocessing import StandardScaler
def read_data(data_path):
with open(data_path, 'r') as f:
data = []
for line in f.readlines():
data.append(line.strip())
return data
features = read_data(r"features.dat")
labels = read_data(r"labels.dat")
train_features, test_features, train_labels, test_labels = train_test_split(features, labels, test_size=0.33,
random_state=33)
scaler = StandardScaler()
train_features = scaler.fit_transform(train_features)
test_features = scaler.fit_transform(test_features)
model = svm.SVC()
model.fit(train_features, train_labels)
prediction =