OpenCV下载安装教程(Windows)

本文详细介绍了如何在Windows系统上下载、安装及配置OpenCV环境,并通过一个简单的图像显示示例验证安装是否成功。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、什么是OpenCV

OpenCV(Open Source Computer Vision Library)是一个广泛使用的开源计算机视觉库,旨在提供丰富的图像和视频处理功能。它最初由Intel于1999年开发,并演变成为一个全球性的开源项目,得到了众多开发者的贡献和支持。OpenCV可以通过C++、Python、Java等编程语言调用,使得开发者能够在不同平台上进行图像处理和计算机视觉应用程序的开发。作为一个全面且强大的计算机视觉库,OpenCV包含了数百个用于图像处理、特征检测、对象识别、视频分析等领域的函数和工具。无论您是希望读取和显示图像、进行图像滤波、边缘检测、图像分割、特征提取,还是进行目标跟踪,OpenCV都能提供相应的功能丰富的API。
说到底,OpenCV只是一个数字图像处理函数库,要全面掌握OpenCV的使用,只需要明白有哪些函数,每个函数怎么使用。这个系列教程要完成的事情,就是让大家系统的了解OpenCV有哪些函数,熟练掌握每个函数的作用和使用方法。

二、下载OpenCV

1、从OpenCv官网下载,找到自己要下载的对应版本(我下在的是4.8.0版本的),然后找到自己对应的操作系统点击即可下载,如下图所示(以最新版本的OpenCV和Windows系统为例):
在这里插入图片描述
2、官网如果不翻墙的话下载很慢,可以从下面网盘提取

链接:https://pan.baidu.com/s/1saspk0x2BFqlLwRA5nnlPw
提取码:a8qo

三、OpenCV的安装

双击刚下好的.exe文件
在这里插入图片描述
选择一个安装路径,点击Extract等待安装完成

四、环境配置

1、配置包含目录

打开VS,右击项目,选择属性,找到下面选项 注意下方红色方框的配置环境,你是要在什么环境下运行就在什么环境下配置
在这里插入图片描述
点击编辑

在这里插入图片描述

打开OpenCV安装目录,参考上面我的配置,把相应路径配置进去

2、配置库目录

和上面一样,选择库目录
在这里插入图片描述
点击编辑

在这里插入图片描述

打开OpenCV安装目录,参考上面我的配置,把相应路径配置进去

3、配置连接器

点击属性页,找到链接器,找到输入,选择添加依赖项
在这里插入图片描述

点击编辑

在这里插入图片描述
找到OpenCV安装目录,根据下面路径打开lib文件夹

在这里插入图片描述
从上图可以看到,箭头1指向的是release模式下的库文件,箭头2指向的是debug模式下的库文件,我用的debug版本的,所以选择2

4、配置环境变量(配置好后重启VS)

右击我的电脑->属性->高级系统设置->环境变量->系统变量
在这里插入图片描述
选择Path点击编辑

在这里插入图片描述
点击新建,根据上图选中的路径在自己的OpenCV安装路径中找打对应的路径进行配置,配置完成逐层点击确定,配置完成后,重启VS,到此所有环境配置完成。

四、验证是否配置成功

打开VS,新建一个C++ Windows桌面向导应用,参照下面代码显示一张图片
在这里插入图片描述

代码编写完成后点击运行
在这里插入图片描述

如果出现刚加载图片的窗体证明环境配置成功!
在这里插入图片描述

智能网联汽车的安全员高级考试涉及多个方面的专业知识,包括但不限于自动驾驶技术原理、车辆传感器融合、网络安全防护以及法律法规等内容。以下是针对该主题的些核心知识点解析: ### 关于智能网联车安全员高级考试的核心内容 #### 1. 自动驾驶分级标准 国际自动机工程师学会(SAE International)定义了六个级别的自动驾驶等级,从L0到L5[^1]。其中,L3及以上级别需要安全员具备更高的应急处理能力。 #### 2. 车辆感知系统的组成与功能 智能网联车通常配备多种传感器,如激光雷达、毫米波雷达、摄像头和超声波传感器等。这些设备协同工作以实现环境感知、障碍物检测等功能[^2]。 #### 3. 数据通信与网络安全 智能网联车依赖V2X(Vehicle-to-Everything)技术进行数据交换,在此过程中需防范潜在的网络攻击风险,例如中间人攻击或恶意软件入侵[^3]。 #### 4. 法律法规要求 不同国家和地区对于无人驾驶测试及运营有着严格的规定,考生应熟悉当地交通法典中有关自动化驾驶部分的具体条款[^4]。 ```python # 示例代码:模拟简单决策逻辑 def decide_action(sensor_data): if sensor_data['obstacle'] and not sensor_data['emergency']: return 'slow_down' elif sensor_data['pedestrian_crossing']: return 'stop_and_yield' else: return 'continue_driving' example_input = {'obstacle': True, 'emergency': False, 'pedestrian_crossing': False} action = decide_action(example_input) print(f"Action to take: {action}") ``` 需要注意的是,“橙点同学”作为特定平台上的学习资源名称,并不提供官方认证的标准答案集;建议通过正规渠道获取教材并参加培训课程来准备此类资格认证考试。
评论 14
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值