239.滑动窗口最大值
给你一个整数数组 nums,有一个大小为 k 的滑动窗口从数组的最左侧移动到数组的最右侧。你只可以看到在滑动窗口内的 k 个数字。滑动窗口每次只向右移动一位。
返回 滑动窗口中的最大值 。
示例 :
输入:nums = [1,3,-1,-3,5,3,6,7], k = 3
输出:[3,3,5,5,6,7]
解释:
滑动窗口的位置 | 最大值 |
---|---|
[1 3 -1] -3 5 3 6 7 | 3 |
1 [3 -1 -3] 5 3 6 7 | 3 |
1 3 [-1 -3 5] 3 6 7 | 5 |
1 3 -1 [-3 5 3] 6 7 | 5 |
1 3 -1 -3 [5 3 6] 7 | 6 |
1 3 -1 -3 5 [3 6 7] | 7 |
思路:
使用单调队列
构建一个单调队列的类,然后就简单啦,用主函数模拟滑动窗口移动的过程,
每次pop()窗口第一个元素,push()窗口最后一个元素,然后front返回窗口的最大值。
class Solution {
public:
class MyQueue{
public:
deque<int> que;//单调队列(从大到小)
//如果窗口移除的元素value等于单调队列的出口元素,那么队列弹出元素,否则不用任何操作
void pop(int value){
if(value == que.front())
que.pop_front();
}
//如果push的元素value大于入口元素的数值,那么就将队列入口的元素弹出
//直到push元素的数值小于等于队列入口元素的数值为止
void push(int value){
while(!que.empty() && value > que.back())
que.pop_back();
que.push_back(value);
}
int front(){
return que.front();
}
};
vector<int> maxSlidingWindow(vector<int>& nums, int k) {
MyQueue que;
vector<int> res;
for(int i = 0; i < k; i++)//加入前k个元素
que.push(nums[i]);
res.push_back(que.front());
for(int i = k; i < nums.size(); i++){
que.pop(nums[i - k]);
que.push(nums[i]);
res.push_back(que.front());
}
return res;
}
};
347.前 K 个高频元素
给你一个整数数组 nums 和一个整数 k ,请你返回其中出现频率前 k 高的元素。你可以按 任意顺序 返回答案。
示例 :
输入: nums = [1,1,1,2,2,3], k = 2
输出: [1,2]
思路:
- 使用map统计元素和它出现的频率。
- 维持一个大小为k的优先级队列(大顶堆每次弹出最大值,就把频率高的弹出了,所以要使用小顶堆,每次弹出频率小的,最后队列里的k个元素就是前k个高频元素)。
- 最后将优先级队列中的元素倒序(因为小顶堆每次弹出最小值)输出到数组中,进行输出。
STL 中,priority_queue 容器适配器的定义如下:
template <typename T,
typename Container=std::vector<T>,
typename Compare=std::less<T> >
class priority_queue{
//......
}
typename T:指定存储元素的具体类型;
typename Container:指定 priority_queue 底层使用的基础容器,默认使用 vector 容器;
typename Compare:指定容器中评定元素优先级所遵循的排序规则,默认使用std::less按照元素值从大到小进行排序,还可以使用std::greater按照元素值从小到大排序,但更多情况下是使用自定义的排序规则。
class cmp//自定义排序规则,<大顶堆,>小顶堆
{
public:
//重载 () 运算符
bool operator()(T a, T b)
{
return a > b;
}
};
完整代码实现:
class Solution {
public:
class cmp{
public:
bool operator()(pair<int, int> a, pair<int, int> b)
{
return a.second > b.second;//大于是小顶堆
}
};
vector<int> topKFrequent(vector<int>& nums, int k) {
//统计元素出现的频率
unordered_map<int, int> map;
for(int i = 0; i < nums.size(); i++)
map[nums[i]]++;
//定义一个小顶堆,对频率进行排序
priority_queue<pair<int, int>, vector<pair<int, int>>, cmp> pri_que;
//用固定大小为k的小顶堆,扫面所有频率的数值
for(unordered_map<int, int>::iterator it = map.begin(); it != map.end(); it++){
pri_que.push(*it);
if(pri_que.size() > k)
pri_que.pop();
}
//倒序输出到数组
vector<int> res(k);
for(int i = k - 1; i >= 0; i--){
res[i] = pri_que.top().first;
pri_que.pop();
}
return res;
}
};