深度学习优化器:《Lookahead Optimizer: k steps forward, 1 step back》
项目地址:
https://github.com/michaelrzhang/lookahead
pytorch版本:
https://github.com/michaelrzhang/lookahead/blob/master/lookahead_pytorch.py
论文地址:
https://arxiv.org/abs/1907.08610
使用方法:(pytorch)
We found that evaluation performance is typically better using the slow weights. This can be done in PyTorch with something like this in your eval loop: