大家好,我是木川

在当今信息过载的时代,求职者也面临着海量的岗位信息,像 Boss 直聘、智联招聘、猎聘等招聘平台职位众多,求职者可能需要花费大量时间筛选

都知道 AI 智能体很火,那能否实现一个工作流,用 AI 技术来提高寻找求职岗位的效率呢,通过自然语言交互多个平台聚合获取符合条件的岗位

实际上是可以的,我使用 coze 创建了一个智能体,用户只需输入所在的城市和感兴趣的岗位名称等信息,就能够迅速筛选出求职岗位

一、效果演示



AI 智能体:做了一个求职岗位推荐的 Agent,我让它给我推荐几个 100k 的工作!..._默认值

AI 智能体:做了一个求职岗位推荐的 Agent,我让它给我推荐几个 100k 的工作!..._默认值_02

AI 智能体:做了一个求职岗位推荐的 Agent,我让它给我推荐几个 100k 的工作!..._默认值_03

二、工作流设计



AI 智能体:做了一个求职岗位推荐的 Agent,我让它给我推荐几个 100k 的工作!..._智联招聘_04

1、整体流程



AI 智能体:做了一个求职岗位推荐的 Agent,我让它给我推荐几个 100k 的工作!..._默认值_05

2、开始模块



AI 智能体:做了一个求职岗位推荐的 Agent,我让它给我推荐几个 100k 的工作!..._智联招聘_06

3、信息提取



AI 智能体:做了一个求职岗位推荐的 Agent,我让它给我推荐几个 100k 的工作!..._字符串_07

角色:变量提取专家

背景:从用户输入{{input}}中提取招聘岗位相关信息

输出格式:变量名称和对应值

输出要求:将用户输入中的信息提取为指定格式的变量

jobName:岗位名称,类型为字符串,比如前端开发,如果未涉及,默认值是不限

city:城市,类型为字符串,比如北京,如果未涉及,默认值是不限

salaryFloor:薪资下限,类型为数字,比如最低20k对应20000,如果未涉及,默认值是0

salaryCap:薪资上限,类型为数字,比如最高30k对应30000,如果未涉及,默认值等于 500000

workYear:工作经验,类型为数字,比如5年工作经验对应5,如果未涉及,默认值是0

eduLeve:学历要求,类型为字符串,比如本科/硕士/博士,如果未涉及,默认值是不限
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.
  • 10.
  • 11.
  • 12.
  • 13.
  • 14.
  • 15.
  • 16.
  • 17.
  • 18.
  • 19.
4、获取岗位

猎聘:



AI 智能体:做了一个求职岗位推荐的 Agent,我让它给我推荐几个 100k 的工作!..._智联招聘_08

智联招聘:



AI 智能体:做了一个求职岗位推荐的 Agent,我让它给我推荐几个 100k 的工作!..._默认值_09

5、信息整合



AI 智能体:做了一个求职岗位推荐的 Agent,我让它给我推荐几个 100k 的工作!..._智联招聘_10

整理 {{jd1}} 和 {{jd2}},按照表格形式输出岗位,并且要过滤不符合 {{condition}} 要求 的岗位,字段包括城市、公司名称、公司规模、岗位名称、薪资、JD 详情链接,模板如下,每个岗位之间空一行

1、岗位1:公司名称-岗位名称 | 来源

城市:

公司规模:

薪资:

岗位详情链接:

2、岗位2:公司名称-岗位名称 | 来源

城市:

公司规模:

薪资:

岗位详情链接:
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.
  • 10.
  • 11.
  • 12.
  • 13.
  • 14.
  • 15.
  • 16.
  • 17.
  • 18.
  • 19.
  • 20.
  • 21.
6、结束模块



AI 智能体:做了一个求职岗位推荐的 Agent,我让它给我推荐几个 100k 的工作!..._默认值_11

三、测试与发布



AI 智能体:做了一个求职岗位推荐的 Agent,我让它给我推荐几个 100k 的工作!..._智联招聘_12

四、复盘与总结

通过智能体的方式获取求职岗位,或许能提升求职效率,当然这个智能体还有优化的空间,比如接入 boss 直聘的岗位,本文只是提供一个思路,可以结合自己的工作场景进行优化

后台回复【求职推荐】可以体验下这个智能体