智慧水利河湖AI智能视频分析识别系统运用视频结构型技术性,根据图像处理与分析,创建图像与图像叙述两者之间的投射关联,掌握视频图像中的內容,运用于水利管理方法情景。智慧水利河湖AI智能视频分析识别系统运用视频智能搜索分析,根据对非结构性原创设计视频数据信息的智能化系统分析解决,创建总体目标的结构型数据库查询,根据对前面视频点监控图像的智能化分析,依据水利具体情景开展科学研究,为河道管理与水利监控智能分析报警给予支撑点。

本研究将采用CRNN(Convolutional Recurrent Neural Network)模型,它是将CNN和循环神经网络(Recurrent Neural Network,RNN)相结合的一种深度学习模型。CRNN模型在图像分类和文字识别任务中都取得了很好的效果,具有很强的泛化能力和鲁棒性。

程序首先导入了所需的库,包括torch、torchvision、os、PIL、cv2、transforms等。然后定义了一个CRNN2类,继承自nn.Module,用于构建基于Transformer的CRNN模型。该模型包括卷积层、位置编码、Transformer编码和全连接层。其中,卷积层用于提取图像特征,位置编码用于将图像特征输入到Transformer中,Transformer编码用于对图像特征进行编码,全连接层用于将Transformer输出映射到类别标签。接下来定义了PositionalEncoding类,用于对输入进行位置编码。该类首先创建一个全零张量pe,大小为max_len * d_model,然后根据位置编码的公式对pe进行编码。编码完成后,将pe作为buffer注册到当前Module中。

智慧水利河湖AI智能视频分析识别 CRNN_opencv

水利枢纽和河道的安全系数,包含水生态环境保护的工作范围内。汽车涉水行为事件人员的生命安全,一直是相关行政机关关心的主要问题。加强水利枢纽和河道的安全工作已经变得更加关键和急迫。根据积极主动引进智能视频监控分析系统,智能监测分析各种人员行为以及车辆船只等物体的异常行为,保证群众人身安全,及时提出预警,降低减少初期伤害控制安全隐患,保证水环境生态安全和人民生命安全。

class TransformerOcr():
    def __init__(self, model_path='checkpoints/CRNN-1010.pth'):
        alphabet_unicode = config.alphabet_v2
        self.alphabet = ''.join([chr(uni) for uni in alphabet_unicode])
        self.nclass = len(self.alphabet) + 1
        self.cuda = False

        #使用基于Transformer的改进CRNN算法
        try:
            self.model = CRNN2(config.imgH, 1, self.nclass, 512)
        except:
            self.model = CRNN(config.imgH, 1, self.nclass, 256)

        if torch.cuda.is_available():
            self.cuda = True
            self.model.cuda()
            self.model.load_state_dict({k.replace('module.', ''): v for k, v in torch.load(model_path).items()})
        else:
            self.model.load_state_dict(torch.load(model_path, map_location='cpu'))

        self.model.eval()
        self.converter = strLabelConverter(self.alphabet)

    def recognize(self, img):
        h, w = img.shape[:2]
        if len(img.shape) == 3:
            img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
        image = Image.fromarray(img)
        transformer = resizeNormalize((int(w / h * 32), 32))
        image = transformer(image)
        image = image.view(1, *image.size())
        image = Variable(image)

        if self.cuda:
            image = image.cuda()

        # 使用选定的模型进行预测
        preds = self.model(image)

        _, preds = preds.max(2)
        preds = preds.transpose(1, 0).contiguous().view(-1)

        preds_size = Variable(torch.IntTensor([preds.size(0)]))
        txt = self.converter.decode(preds.data, preds_size.data, raw=False).strip()

        return txt
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.
  • 10.
  • 11.
  • 12.
  • 13.
  • 14.
  • 15.
  • 16.
  • 17.
  • 18.
  • 19.
  • 20.
  • 21.
  • 22.
  • 23.
  • 24.
  • 25.
  • 26.
  • 27.
  • 28.
  • 29.
  • 30.
  • 31.
  • 32.
  • 33.
  • 34.
  • 35.
  • 36.
  • 37.
  • 38.
  • 39.
  • 40.
  • 41.
  • 42.
  • 43.
  • 44.
  • 45.
  • 46.

智慧水利河湖AI智能视频分析识别系统作为市、县二级共享资源齐抓共管服务平台,视频分析系统软件主要可以在全区区域内启用视频智能化分析优化算法,销售市场传统的监控摄像头可以连接分析系统软件,完成全自动分析、全自动识别、全自动警报,协助水利智能化管控,提升水利智能化管理能力。