题目描述:
一只青蛙一次可以跳上1级台阶,也可以跳上2级。求该青蛙跳上一个n级的台阶总共有多少种跳法(先后次序不同算不同的结果)。
解题思路:
跳到n阶的时候,可能是n-2阶一次性跳两阶过来的,还可能是由n-1阶一次性跳一阶过来的,根据这个原理,所以说f(n) = f(n-1) + f(n-2)。利用递归思想可以解题,具体代码如下:
class Solution
{
public:
//递归 f(n) = f(n-1) + f(n-2)
int jumpFloor(int number)
{
if (number == 1) return 1;
if (number == 2) return 2;
if (number > 2)
{
return jumpFloor(number - 1) + jumpFloor(number - 2);
}
else
return -1;
}
};
2.在这里,递归已经能通过测试了,但是总的来说,递归是一个低效的做法,可以将递归修改为循环迭代的做法,具体代码如下:
class Solution
{
public:
//递归 f(n) = f(n-1) + f(n-2)
int jumpFloor(int number)
{
if (number == 1) return 1;
if (number == 2) return 2;
int first = 1;
int second = 2;
int tmp = 0;
for (int i = 2; i < number; i++)
{
tmp = first + second;
first = second;
second = tmp;
}
return second;
}
};
通过将递归换成循环迭代,运行时间从500+ms降低到了3ms,效果显著。