自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(22)
  • 收藏
  • 关注

转载 Datawhale - Hello Transformer

模型结构概览模型输入Encoder Decoder 模型输出 模型构建 实战案例

2021-10-12 10:49:55 345

转载 matplotlib(五) 样式色彩秀芳华

目录样式批量修改全局样式样式批量修改全局样式plt.style.use('ggplot')['Solarize_Light2', '_classic_test_patch', 'bmh', 'classic', 'dark_background', 'fast', 'fivethirtyeight', 'ggplot', 'grayscale', 'seaborn', 'seaborn-bright', 'seaborn-colorblind', 'seaborn-dark..

2021-09-25 14:48:09 185

转载 datawhale matplotlib (4)文字图例尽眉目

文本pyplot API和objected-oriented API分别创建文本figure text在Figure的任意位置添加text.pyplot API:matplotlib.pyplot.figtext(x, y, s, fontdict=None, **kwargs)OO API:text(self, x, y, s, fontdict=None,**kwargs)text在 Axes的任意位置添加textpyplot API:matplotlib.pyplot.text(

2021-09-24 15:12:11 351

原创 datawhale matplotlib(3)

布局格式import numpy as npimport pandas as pdimport matplotlib.pyplot as pltplt.rcParams['font.sans-serif'] = ['SimHei'] #用来正常显示中文标签plt.rcParams['axes.unicode_minus'] = False #用来正常显示负号子图方法ax.plot, hist, scatter, bar, barh, pieax. axhline, axvlin

2021-09-21 12:57:22 1357

原创 datawhale-matplotlib绘画教程(2)

matplotlib user guide文章目录原理创建图像的标准流程primitive2DLinesproblemPatchesRectangle-矩形Polygon 多边形Wedge 楔形OthersBug原理用Artist对象在画布(canvas)上绘制(Render)图形。matplotlib.backend_bases.FigureCanvas:绘图区,所有的图像都是在绘图区完成的matplotlib.backend_bases.Renderer:渲染器,可以近似理解为画笔,控

2021-09-19 20:29:16 529 1

原创 Matplotlib初相识

introductionimport matplotlib.pyplot as pltimport numpy as np创建figure以及axesfig, ax = plt.subplots() # 创建一个包含一个axes的figureax.plot([1, 2, 3, 4], [1, 4, 2, 3]); # 绘制图像一个figure包含Figure:顶层级,用来容纳所有绘图元素Axes:matplotlib宇宙的核心,容纳了大量元素用来构造一幅幅子图,一个figure

2021-09-12 16:35:51 146

原创 Latex 字体字号

2021-08-25 21:00:01 148

原创 Datawhale ensemble learning 案例分析01

集成学习案例一:幸福感预测思路及代码导入packageimport osimport time import pandas as pdimport numpy as npimport seaborn as snsfrom sklearn.linear_model import LogisticRegressionfrom sklearn.svm import SVC, LinearSVCfrom sklearn.ensemble import RandomForestClassifier

2021-08-01 14:29:01 93

原创 Datawhale 集成学习 Task2

文章目录蒸汽量预测导入package加载数据探索数据特征工程模型搭建构造训练集和测试集构建评价函数获得数据模型训练模型和结果的保存蒸汽量预测导入packageimport warningswarnings.filterwarnings("ignore")import matplotlib.pyplot as pltimport seaborn as sns# 模型import pandas as pdimport numpy as npfrom scipy import statsf

2021-07-31 22:36:07 332

原创 Datawhale ensemble learning task07

作业笔记 Blending基本思想(1) 将数据划分为训练集和测试集(test_set),其中训练集需要再次划分为训练集(train_set)和验证集(val_set);(2) 创建第一层的多个模型,使用train_set训练第一层的多个模型,然后用训练好的模型预测val_set和test_set得到val_predict, test_predict1;(4) 创建第二层的模型,使用val_predict作为训练集训练第二层的模型,用第二层模型对测试集test_predict1进行预测得到test

2021-07-26 14:24:46 261

原创 Datawhale ensemble learning task06

文章目录作业Adaboost的基本思路Adaboost和GBDT的联系和区别Boosting与bagging的区别,如何提升模型的精度?使用基本分类模型和Boosting提升的模型,并画出他们的决策边界尝试使用XGBoost模型完成一个具体的分类问题,并进行调参Boosting 笔记基本思路主要方法Adaboost前向分步算法梯度提升决策树XGBoostLightGBM算法Reference作业Adaboost的基本思路提高那些被前一轮分类器错误分类的样本的权重,而降低那些被正确分类的样本的权重。这

2021-07-25 21:32:00 329

原创 datawhale-task05

作业1. 什么是Bootstraps2. bootstraps和bagging的联系3. 什么是bagging4. 随机森林和bagging的联系和区别5. 使用偏差和方差阐释为什么bagging能提升模型的预测精度6. 使用Bagging和基本分类模型或者回归模型做对比,观察bagging是否相对于基础模型的精度有所提高7. 你会使用python+numpy+sklearn的基础模型来实现bagging吗?笔记投票法介绍  投票法在回归模型与分类模型..

2021-07-21 21:18:42 351

原创 Datawhale task3

1. 回归问题和分类问题的区别和联系,如何利用回归问题理解分类问题?首先度量分类问题和回归问题的指标有差异。回归问题是离散变量。回归问题可以看成离散的分类问题2.为什么分类问题的损失函数可以是交叉熵而不是均方误差?因为分类问题的因变量是类别变量,是离散的3.线性判别分析和逻辑回归在估计参数方便有什么异同?4. 尝试从0推导svmhttps://zhuanlan.zhihu.com/p/318869345. 二次判别分析,线性判别分析,朴素贝叶斯之间的联系和区别6. 使用.

2021-07-20 21:17:07 116

原创 Datawhale Task03

笔记跟上一个Task内容放到一起了Task03 作业1. 一个具体的案例解释什么叫偏差&方差偏差度量的是单个模型的学习能力,模型的偏差是指:为了选择一个简单的模型去估计真实函数所带入的误差。偏差度量了学习算法的期望预测与真实结果的偏离程度,即刻画了学习算法本身的拟合能力。而方差度量的是同一个模型在不同数据集上的稳定性。方差:期望值与真实值之间的波动程度,衡量的是稳定性偏差:期望值与真实值之间的一致差距,衡量的是准确性比如这个图就显示出偏差和方差的区别。2. 偏差与方差.

2021-07-18 19:39:21 140

原创 Datawhale task2 --- 机器学习基础

目录sklearn 代码相关2.1 sklearn生成数据集2.2 sklearn 构建完整的回归项目sklearn 代码相关2.1 sklearn生成数据集sklearn API referenceeg. 生成符合正态分布的聚类数据from sklearn import datasetsx, y = datasets.make_blobs(n_samples=5000, n_features=2, centers=3)2.2 sklearn 构建完整.

2021-07-15 20:38:13 217

原创 Datawhale-集成学习笔记

2021-07-13 18:00:48 66

原创 服务器配置记录

服务器配置指南文章目录服务器配置指南安装服务器操作系统新建用户,并添加用户组配置openssh远程桌面⭐配置自己的深度学习环境安装nvidia驱动安装Anaconda3安装pycharm安装matlab安装服务器操作系统我们安装的是ubuntu server 16.04 lts。从20.04一路试下来,更高版本的都会报错。新建用户,并添加用户组配置openssh远程控制远程桌面⭐配置自己的深度学习环境安装nvidia驱动看了所有的教程都是说需要先卸载【TBC】有一个很好用的ubuntu

2021-01-17 21:50:53 463 1

原创 PYCHARM 小技巧汇总【更新中】

文章目录最近在看别人在github上的代码,发现超难看懂,在阅读之余发现pycharm还有一些非常好的我之前没有发现的用法,记录在这个帖子里。下面有python console可以一边debug,一边运行一些语句。如果你想看某个函数在这个文件夹里其他地方是否被用过,你可以把鼠标放到这个函数上,右键find usages,就可以看到该函数在其他地方放被调用...

2020-07-05 21:34:48 152

原创 链接专楼——记录下自己进行软件配置时所用到的链接,以防下次踩坑

文章目录Vscode + textlive 配置下载vscode和textlive配置textlive配置vscodeVscode + textlive 配置下载vscode和textlive我的vscode在anaconda里下载的,textlive是在官网上下载的配置textlive将textlive安装目录下的bin/win32添加进系统环境变量配置vscode参考链接:h...

2020-03-14 22:42:21 157

转载 20190408 编程笔记 keras 可视化

今天学习了keras官方中文文档,大概明白了sequential序列的变成,函数式api没有怎么看懂。前面都是简单介绍损失函数,激活函数等常见参数。后来提到神经网络可视化我很感兴趣但是使用官方代码就出了问题from tensorflow import kerasfrom keras.util import plot_modelplot_model(model, to_file...

2019-04-08 20:35:04 219

原创 插值与逼近(一):Lagrange插值

Lagrange插值数值方法符号计算对多项式的系数进行操作Lagrange插值对多个数据点 f(xi)=yi,∀i=1,2,...nf(x_i)=y_i, \forall i=1,2,...n Ln(x)=∑ni=0yi∗li(x)L_n(x)=\sum_{i=0} ^n y_i*l_i(x) 基函数li(x)=∏nj=0,j

2017-12-15 12:54:11 4048

原创 文章标题

Matlab 小常识一路径Matlab 对路径的操作及读写文件MATLAB 保留变量易混数学符号符号计算绘图plotxysezplotf

2017-12-12 21:06:52 278

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除