粒子滤波定位

本文详细介绍了利用粒子滤波算法实现车辆长期在城市环境中的精确定位。首先,通过初始化阶段在搜索空间内均匀分布粒子;然后,根据车辆的运动方程更新粒子状态,通常结合惯导数据;接着,计算数据关联权重,如三维点匹配误差;再进行重采样过程,根据权重选择新的粒子;最后,重复以上步骤直至运动结束。参考文献涉及使用极点地标从3D激光扫描中提取信息进行实时定位。
摘要由CSDN通过智能技术生成

基于粒子滤波的定位


粒子滤波

(1)初始化:大量粒子模拟状态,搜索空间内均匀分布;
(2)状态更新:根据运动方程更新状态(粒子),定位中一般为惯导数据;
(3)权重计算:data association[1][2],定位中一般为三维点配准误差或者特征匹配误差,误差越大权重越小;
(4)重采样:基于权重,轮盘抽奖进行重采样;
(5)重复(2)到(4),直到运动结束。

[1] Schaefer A , D Büscher, Vertens J , et al. Long-Term Urban Vehicle Localization Using Pole Landmarks Extracted from 3-D Lidar Scans[J]. IEEE, 2019.
[2] Pole-Based Real-Time Localization for Autonomous Driving in Congested Urban Scenarios[C]// IEEE International Conference on Real-time Computing and Robotics. 0.


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值