基于粒子滤波的定位
粒子滤波
(1)初始化:大量粒子模拟状态,搜索空间内均匀分布;
(2)状态更新:根据运动方程更新状态(粒子),定位中一般为惯导数据;
(3)权重计算:data association[1][2],定位中一般为三维点配准误差或者特征匹配误差,误差越大权重越小;
(4)重采样:基于权重,轮盘抽奖进行重采样;
(5)重复(2)到(4),直到运动结束。
[1] Schaefer A , D Büscher, Vertens J , et al. Long-Term Urban Vehicle Localization Using Pole Landmarks Extracted from 3-D Lidar Scans[J]. IEEE, 2019.
[2] Pole-Based Real-Time Localization for Autonomous Driving in Congested Urban Scenarios[C]// IEEE International Conference on Real-time Computing and Robotics. 0.