可视化卷积神经网络的 中间激活

前言

可视化卷积神经网络连续的层如何对输入进行变换有助于了解卷积神经网络每个过滤器的含义。

一、加载模型

加载https://blog.csdn.net/weixin_40356612/article/details/107639569文章中保存的模型。

from keras.models import load_model

model = load_model('cats_and_dogs_small_2.h5')

二、单张图片处理

from keras.preprocessing import image
import numpy as np
import matplotlib.pyplot as plt

img_path = "./dogs_and_cats_small/test/cats/cat.1700.jpg"
img = image.load_img(img_path, target_size=(150, 150))
img_tensor = image.img_to_array(img)
img_tensor = np.expand_dims(img_tensor, axis=0)
img_tensor /= 255.
print(img_tensor.shape)

plt.imshow(img_tensor[0]
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

windawdaysss

觉得文章有用,可以请我喝杯咖啡

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值