前言
可视化卷积神经网络连续的层如何对输入进行变换有助于了解卷积神经网络每个过滤器的含义。
一、加载模型
加载https://blog.csdn.net/weixin_40356612/article/details/107639569文章中保存的模型。
from keras.models import load_model
model = load_model('cats_and_dogs_small_2.h5')
二、单张图片处理
from keras.preprocessing import image
import numpy as np
import matplotlib.pyplot as plt
img_path = "./dogs_and_cats_small/test/cats/cat.1700.jpg"
img = image.load_img(img_path, target_size=(150, 150))
img_tensor = image.img_to_array(img)
img_tensor = np.expand_dims(img_tensor, axis=0)
img_tensor /= 255.
print(img_tensor.shape)
plt.imshow(img_tensor[0]