前言
可视化卷积神经网络连续的层如何对输入进行变换有助于了解卷积神经网络每个过滤器的含义。
一、加载模型
加载https://blog.csdn.net/weixin_40356612/article/details/107639569文章中保存的模型。
from keras.models import load_model
model = load_model('cats_and_dogs_small_2.h5')
二、单张图片处理
from keras.preprocessing import image
import numpy as np
import matplotlib.pyplot as plt
img_path = "./dogs_and_cats_small/test/cats/cat.1700.jpg"
img = image.load_img(img_path, target_size=(150, 150))
img_tensor = image.img_to_array(img)
img_tensor = np.expand_dims(img_tensor, axis=0)
img_tensor /= 255.
print(img_tensor.shape)
plt.imshow(img_tensor[0])
plt.show()
输出为:(1, 150, 150, 3)
以及一只可爱的猫咪:
三、可视化单通道特征图
from keras import models
import matplotlib.pyplot as plt
layer_outputs = [layer.output for layer in model.layers[:8]]
activation_model = models.Model(inputs=model.input, outputs=layer_outputs) # 允许有多个输出
activations = activation_model.predict(img_tensor) # 上张猫咪图,返回8个np数组构成的列表
first_layer_activation = activations[0]
print(first_layer_activation.shape)
plt.matshow(first_layer_activation[0, :, :, 5], cmap='viridis')
输出为:(1, 148, 148,32)
以及一张单通道特征图:
四、可视化所有层的各通道特征图
layer_names = []
for layer in model.layers[:8]:
layer_names.append(layer)
images_per_row = 16 # 每行16张图
for layer_name, layer_activation in zip(layer_names, activations):
n_features = layer_activation.shape[-1] # 特征图个数
size = layer_activation.shape[1] # 图像尺寸
n_cols = n_features//images_per_row # 行数
display_grid = np.zeros((size * n_cols, size * images_per_row))
for col in range(n_cols):
for row in range(images_per_row):
channel_image = layer_activation[0, :, :, col*images_per_row + row]
channel_image -= channel_image.mean()
channel_image /= channel_image.std()
channel_image *= 64
channel_image += 128
channel_image = np.clip(channel_image, 0, 255).astype('uint8')
display_grid[col*size:(col+1)*size, row*size:(row+1)*size] = channel_image
scale = 1./ size
plt.figure(figsize=(scale * display_grid.shape[1], scale * display_grid.shape[0]))
plt.title(layer_name)
plt.grid(False)
plt.imshow(display_grid, aspect='auto', cmap='viridis')
plt.show()
输出:
第一卷积层:
第三卷积层:
第五卷积层:
第7卷积层
五、结论
- 第一层是各种边缘探测器的集和,激活几乎保留了原始图像的所有信息;
- 随着层数加深,激活变得越来越抽象和在直观上难以理解。
- 层数越深,其表示关于图像视觉内容的信息就越少,关于内别的信息就越多。也就是更高的激活层包含关于特定输入的信息越来越少,而关于目标的 信息越来越多。可将深度神经网络比作信息蒸馏管道,将输入数据反复进行变换,过滤调无用的信息,放大和细化有用的信息。
- 这种方式和人类以及动物感知世界的方式类似。
参考文献
- 佛朗索瓦.肖莱著,张亮译. Python深度学习[M]. 人民邮电出版社.2018.8.p130-136.