- 博客(45)
- 资源 (8)
- 收藏
- 关注

原创 Dify知识库构建流程及示例
管理界面配置项相似度阈值:滑动条调整(0.1~0.9)。备用回答模板:支持Markdown自定义(如企业品牌话术)。自动化扩展开关:启用/关闭未命中问题的自动学习功能。代码级规则示例response += "\n\n*[注:此回答未引用知识库]*"else:response = "抱歉,暂无相关信息。已记录您的问题。
2025-03-18 14:17:30
1482

原创 Docker部署黑马商城项目笔记
运行以下命令2.通过命令创建一个网络通过命令让hmall和mysql在同一网络中可通过docker network ls查看网络,docker exec -it 容器名 bash 进入容器,即可ping同一个网络中的容器。3.修改application-local.yaml之后对hmall打包,上传hm-service目录下的Dockerfile和hm-service/target目录下的hm-service.jar4.上传镜像到root目录之后,构建镜像,在root目录下执行命令运行容器。
2024-03-12 20:12:51
848

原创 在Linux部署Docker并上传静态资源(快速教程)
设置Docker仓库通过以下命令添加Docker的官方仓库到yum源中:安装Docker Engine通过yum安装Docker Engine:启动Docker服务安装完成后,启动Docker服务:验证Docker安装通过运行hello-world镜像来验证是否正确安装了Docker:通过以下命令查看运行情况应用启动Nginx相关小知识进入Nginx可通过命令:Nginx在容器中的工作目录为: 数据卷存放位置为:数据卷只能在创建时挂载,由于第一步只是演示,没有挂载数据
2024-03-04 10:42:06
823

原创 增量学习分享
增量学习主要应用于判别性任务。在这个场景中,分类任务是按顺序学习的。在序列的最后,判别模型应该能够记住所有的任务。从一个任务到下一个任务的简单的微调方法会导致灾难性遗忘,也就是说,无法在之前的任务上保持初始性能。之前提出的方法可以分为四种类型。第一种方法,称为排练,是保留以前任务的样本。这些样本可以用不同的方式来克服遗忘。该方法不能用于以前任务的数据不可用的场景。此外,这种方法的可扩展也会受到质疑,因为存储样本所需的内存会随着任务的数量线性增长。第二种方法采用正则化。正则化约束权重的更新,以保持之前任务
2022-05-22 22:42:02
2764

原创 TinyImageNet数据集读取与计算均值和标准差
最近在使用TinyImageNet数据集做分类任务,网络上对这个数据集的使用不算多,故做一些记录。读取借鉴github,读取数据集https://github.com/Manikvsin/TinyImagenet-pytorch/blob/master/tiny_image_net_torch.pyimport torchfrom torch.utils.data import Dataset, DataLoaderfrom torchvision import models,utils,dat
2021-07-13 10:28:37
1956
1
原创 Python快速生成100M大小TXT文本,超三千万汉字
Python快速生成词语,句子,段落,篇章,可生成100M大小TXT文本,超三千万汉字。
2025-03-19 09:57:23
247
原创 数据结构:python实现最大堆算法
最大堆的主要操作包括插入元素和提取最大值。对于索引i的节点,其左子节点是2i+1,右子节点是2i+2,父节点则是(i-1)//2。提取最大值的操作通常是取出堆顶元素(即数组的第一个元素),然后将数组的最后一个元素移到堆顶,接着进行下沉操作(percolate down),也就是与左右子节点中较大的那个比较,如果比子节点小就交换,直到满足堆的性质。插入元素时,需要将新元素添加到数组的末尾,然后进行上浮操作(percolate up),也就是不断和父节点比较,如果比父节点大就交换位置,直到满足最大堆的性质。
2025-03-07 09:34:39
337
原创 数值分析笔记(五)线性方程组解法
三角分解法u1ja1jj12⋯nli1ai1u11i23⋯nukjakj−m1∑k−1lbmumj⇒akjjkk1⋯nlikaik−m1∑k−1linumkukk⇒akkik1k2⋯nk23⋯n楚列斯基分解对于n阶(n>1)对称正定矩阵,楚列斯基分解AL∗L。
2024-07-06 15:37:27
1089
原创 数值分析笔记(四)数值微积分
牛顿-科茨公式∫abfxdx≈b−ak0∑nCknfakh其中,Ckn为科茨系数。n=1时,系数为1/2, 1/2,又称梯形公式,即∫abfxdx≈2b−afafbn=2时,系数为1/6,4/6,1/6,又称辛普森公式,抛物线公式,即∫abfxdx≈6b−afa4f2abfb。
2024-06-30 15:48:00
1853
原创 数值分析笔记(三)函数逼近
函数逼近是使用一种简单易算的函数来近似表示一个复杂函数。该问题可转化为求解线性方程组GnCFn其中,系数Cc0c1⋯cnTFn((fφ0fφ1⋯fφnTGn是格拉姆矩阵。称该线性方程组为法方程组或正规方程组。最佳平方逼近的解函数为φ∗∑i0nci∗φi。最佳平方逼近函数,继承内积,即φ∗φ∗φ∗f。
2024-06-25 20:58:33
1186
原创 数值分析笔记(二)函数插值
已知函数fx在区间[a,b]上n+1个互异节点xii0n处的函数值yii0n,若函数集合Φ中函数ϕx满足条件ϕxiyii012⋯n称ϕx为fx在Φ中关于节点xii0n的插值函数。Rnxfx−ϕx为插值余项。选取1xx2...xn作为n次多项式空间的一组基函数,对于多项式插值,有Rnxfx−ϕxn1fn1ξωn1x。
2024-06-16 11:36:51
1077
原创 数值分析笔记(一)误差及其传播
sinxx−3!x35!x5−7!x7...若取sinx≈x−3!x35!x5−7!x7...−1n−12n−1x2n−1,由于截断了无穷级数自第n项起的后段而产生的截断误差。把一个浮点数在计算机中表示,可能引起的误差,这样的误差叫舍入误差。:研究截断误差是否趋近于0。:研究原始数据,在逐步计算过程中是否可控。若x∗为x的近似值,则ex∗x∗−x为x。
2024-06-14 19:39:39
839
原创 多线程问题python代码(交替打印A,B,生产者-消费者问题)
结果AAABBBBBBAAABBBAAAAAABBBAAABBBAAABBBAAABBBAAABBBAAABBBAAABBB。
2024-05-13 16:34:42
388
1
原创 python雪花算法(简易实现版)
雪花算法是一种分布式唯一ID生成算法,其特点在于结合了时间戳、数据中心ID和工作机器ID来生成全局唯一的ID,适合在分布式系统中生成有序且唯一的ID。代码如下。
2024-03-20 11:33:13
499
原创 Linux常用命令复习(极速版)
本文介绍了Linux系统的基础命令,包括工作路径切换、文件操作、进程管理、压缩包处理、重定向、vim编辑器使用、用户管理以及常见目录名称等。这些命令对于Linux系统的日常管理和维护至关重要。
2024-02-13 16:18:53
413
1
原创 用TRIZ创新方法理论指导产品研发学习笔记
通过对TRIZ的学习,能够帮助我们系统的分析问题情境,快速发现问题本质或者矛盾,它能够准确的确定问题探索方向,帮助我们突破思维障碍,打破思维定势,以新的视觉分析问题,进行系统思维,根据技术进化规律预测未来发展趋势,并帮助我们开发富有竞争力的新产品。事物的矛盾法则,也称为辩证法的矛盾法则,是马克思主义哲学中的一个基本概念,用于描述事物内部矛盾的本质和发展规律。运用TRIZ理论挑选能解决特定冲突的原理,其前提是要按标准参数确定冲突,然后针对冲突从TRIZ理论的40条原理中找到解决冲突的办法。
2023-10-11 10:47:46
773
原创 一个最简单的数据分析实例(含计算AUROC,绘制P-R曲线)
或者用其他相似的数据集作为练习。准确率: 0.99875。train.csv可在。召回率:0.6364。
2023-06-14 17:19:01
368
原创 数据分析笔记:基本概念,常用图表,报告大纲
数据分析的基本步骤包括明确思路,制定计划、数据收集、数据处理、数据分析、数据显示和报告撰写。 6、三年内,如果你好好的规划一下你的人生和时间,你能够取得是之前的三到五倍。 4、如果你让自己一天做二十件事情,则会完成七至八件甚至更多; 5、一年之中,你真正在做有价值的事情的时间不会超过九十天;平均分析:反映总体在一定时间、地点下某一数量特征的一般水平。 3、如果你让自己一天做一件事情,你会花一整天去做;漏斗图:流程规范,环节多的管理分析工具。 不同国家,不同地区,不同部门。
2023-05-23 11:23:48
581
原创 pytorch读取常用数据集dataset实现例子
pytorch读取各种图像数据集的dataset具体实现,供参考,包括MNIST,CIFAR系列,CUB200,TinyImageNet,MiniImageNet,Flower,Food,Car等,以及官方预定义的数据集说明。
2022-05-23 09:19:25
2961
1
原创 用python找千字文的重复字
千字文引用百度百科千字文,由南北朝时期梁朝散骑侍郎、给事中周兴嗣编纂、一千个汉字组成的韵文(在隋唐之前,不押韵、不对仗的文字,被称为“笔”,而非“文”)。梁武帝(502—549年)命人从王羲之书法作品中选取1000个不重复汉字,命员外散骑侍郎周兴嗣编纂成文。全文为四字句,对仗工整,条理清晰,文采斐然。《千字文》语句平白如话,易诵易记,并译有英文版、法文版、拉丁文版、意大利文版,是中国影响很大的儿童启蒙读物。中国大陆实行简化字、归并异体字后,其简体中文版本剩下九百九十余个相异汉字。用pytho
2021-09-01 15:56:03
1183
原创 大数据spark笔记整理
CAP理论可用性(Consistency),一致性(Availability),分区容忍性(Tolerance),三者取二传统HPC并行计算架构,使用SAN共享底层框架,难扩展,一个节点故障系统不运行MapReduce计算向数据靠拢:数据不迁移,在节点上计算,再汇总结果spark中,map将函数作用到数据集的每一个元素上,生成一个新的分布式的数据集(RDD)返回flatMap会先执行map的操作,再将所有对象合并为一个对象,返回值是一个SequencereduceByKey会寻找相同ke
2021-07-07 20:35:36
312
2
原创 卸载双系统后正常启动win10
百度词条GNU GRUB 和GRUB是GRand Unified Bootloader的缩写,它是一个多重操作系统启动管理器。用来引导不同系统,如windows,linux。装了Ubuntu和win10双系统,把Ubuntu删除了,结果开机弹出grub界面,一下子懵了。查了一下资料,不用重装系统了✌。先用ls查看系统分区,我的是(hd0,gpt2)set root=(hd0,gpt2)chainloader /EFI/Microsoft/Boot/bootmgfw.efiboot注:c
2021-07-04 14:32:51
233
原创 Residual Attention Network网络56和92层的计算
有两种结构def attention56(): return Attention([1, 1, 1])def attention92(): return Attention([1, 2, 3])原文的结构这个56和92怎么计算的呢?源代码"""residual attention network in pytorch[1] Fei Wang, Mengqing Jiang, Chen Qian, Shuo Yang, Cheng Li, Honggang Zhang
2021-04-05 10:56:54
697
原创 部分概念术语及名词理解
学习的理解学习问题是指依据经验数据选取所期望的依赖关系的问题。学习过程是一个从给定的函数集中选择一个适当的函数的过程。主要问题:对抗样本与鲁棒性、可解释性、数据安全与隐私性、决策因果性、逻辑性、公平性、无偏见。常见问题:异常,缺失,不平衡,扩容问题。神经网络的能力RepresentationOptimizationGeneralization不确定性的知识+所含不确定性度量的知识=有用的知识Softmax不等于概率,因为不具备泛化能力,在未知数据样本仍然显得过于自信。数据+特
2021-03-09 22:18:21
481
原创 一些bug的简单记录及可能的解决方法:安装模块,更新失败,显卡问题
1.Defaulting to user installation because normal site-packages is not writeable。ERROR: Operation cancelled by user已配置的文件无法修改,建议重新搭个环境,最快。比如pytorchhttps://download.pytorch.org/whl/torch_stable.html下个torch稳定版2.targets.cuda(async=True)Syntax Error: inv
2021-03-09 21:41:30
5518
原创 AdaBoost:以一个demo展开
AdaBoostAdaBoost是AdaptiveBoost的缩写,表明该算法是具有适应性的提升算法。算法的步骤如下:1)给每个训练样本(x1,x2,….,xN)分配权重,初始权重w1w_{1}w1均为1/N。2)针对带有权值的样本进行训练,得到模型GmG_mGm(初始模型为G1)。3)计算模型GmG_mGm的误分率em=∑i=1NwiI(yi≠Gm(xi))e_m=\sum_{i=1}^Nw_iI(y_i\not= G_m(x_i))em=∑i=1NwiI(yi=Gm(xi
2021-01-28 22:12:26
197
1
原创 随机方法解决七选五,骰子和硬币问题的例子
蒙特卡洛思想七选五全错的概率英语七选五,选择时不包括重复选项,任意选,全错的概率。import numpy as npimport timeselection = [1,2,3,4,5,6,7]cnt = 0 #猜对次数batch = 1e5 # 测试总次数start = time.time()for i in range(int(batch)): # 生成标准答案 tmp = selection[:] for j in range(2): num
2020-12-13 21:32:57
594
1
原创 论文笔记:BBN: Bilateral-Branch Network with Cumulative Learning for Long-Tailed Visual Recognition
BBN: Bilateral-Branch Network with Cumulative Learning for Long-Tailed Visual Recognition,CVPR 2020核心思想解耦分类网络的特征学习层和分类层。问题长尾识别:少数类别占据大部分数据,大多数类别样本数很少。以前方法类重新平衡(class re-balancing),可能损害表示学习的特征的表征能力。重采样(re-sampling)或重加权(re-weighting)有效的原因是提升分类器的学习能力,但
2020-12-08 10:29:06
837
2
原创 论文笔记:DECOUPLING REPRESENTATION AND CLASSIFIER FOR LONG-TAILED RECOGNITION
原文地址代码本文来自ICLR20。对长尾识别,通常是joint学习,就是representation和分类一起进行。本文的创新点就在于打破这个固有认识。现有类平衡策略三种维度:损失重采样,数据重采样,学习从头到尾转换(迁移学习)。第一种损失在各类别上不同,各类别的损失权重不同,难样本(hard example)需要更加重视。第二种数据分布再平衡。头类的欠采样、尾类的过采样和数据实例的重加权。第三种将头部知识应用到尾部分类。问题视觉现象遵循长尾分布,许多标准方法都无法正确建模,从而导致准确性
2020-12-02 20:52:37
855
原创 图论基础算法(C/C++):最短路径:最小生成树,拓扑排序举例
目录宽度优先遍历求最短路径Prim算法求最小生成树Kruskal求最小生成树dijkstra算法求最短路径拓扑排序算法总结宽度优先遍历求最短路径txt文件如下7 81 21 42 34 32 63 54 55 7如图,我们求各节点到节点1的距离,只需在遍历过程增加一个数组存放距离,且在访问节点过程中距离+1即可。注意有向图和无向图皆可。//无向图宽度优先遍历求最短路径 #include<iostream>#include<vector>#inc
2020-08-31 16:59:06
852
原创 数论基础算法(C/C++):模线性方程组,快速幂,素性真实问题
目录基础问题1 量水问题2 求解模线性方程问题3 求解模线性方程组问题4 快速幂模运算问题 5素性测试真题1真题2真题3基础Euclid算法最大公约数gcd(a,b)={a if b=0gcd(b,a mod b)elsegcd(a,b)= \begin{cases}a & &\;\; if \;b = 0 \\gcd(b,a \;mod\; b) & & else \\\end{cases}gcd(a,b)={agcd(b,amodb)
2020-08-30 11:10:12
604
原创 九大学习算法简介,玩转分类回归(python版)
机器学习资料多如牛毛,不乏西瓜书,统计学习方法等经典。但多数书籍凸显细节,以致掩盖算法本质,只有参数可调。本文试图避免复杂的公式推导和算法无关的代码,用少量公式和代码,展示算法最基本的组成,以便对机器学习有更加深刻的理解。线性回归机器学习定义五花八门,归结起来,就是得到变量之间的期望的依赖关系。欲拟合变量x,y所满足的线性关系y=ωx+b+ϵy=\omega x+b+\epsilony=ωx+b+ϵ这里的yyy广义上讲是标签, xxx则是特征,ω\omegaω是参数,bbb是偏置项,ϵ\epsilo
2020-08-27 09:27:22
451
原创 论文笔记:Large-Scale Object Detection in the Wild from Imbalanced Multi-Labels
这是中科院计算所的一篇讨论大规模目标检测的论文,主要解决多标签,类别不均衡的问题。论文地址在过去的几年里,目标检测领域取得很大的进步。Pascal VOC、MS COCO等具有高质量标注的通用目标检测数据集极大地推动了OD的发展。然而,这些数据集在今天看来是相当小的,并开始在一定程度上限制OD的发展。人们更多关注于数据集上的原子问题,而不是在更困难的场景中研究OD。Open Image标注过程是在深度学习的帮助下完成的,候选标签由模型生成并由人类验证。由于模型的不确定性和人类个体的知识有限性,这不可避免
2020-08-14 10:37:19
1977
2
原创 论文笔记:Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan Alexander Pritzel Charles Blundell DeepMind{balajiln,apritzel,cblundell}@google.com提出问题1. 神经网络容易产生过于自信的预测,而错误预测的代价不可接受,必须要估计不确定度。2. 让网络知道自己知道什么。在领域外预测(out-of-distribution)输...
2020-04-08 16:10:00
3662
1
原创 POD论文:AugPOD: Augmentation-oriented Probabilistic Object Detection
The Robotic Vision Probabilistic Object Detection ChallengeA CVPR 2019 Workshop – Long Beach, 17 June 2019Contributed Talk (1st place): AugPOD: Augmentation-oriented Probabilistic Object Detection. ...
2020-04-06 08:49:44
669
原创 论文记录:Probabilistic Object Detection via Staged Non-Suppression Ensembling
TeamGL at ACRV Robotic Vision Challenge 1:Probabilistic Object Detection via Staged Non-Suppression EnsemblingThe Robotic Vision Probabilistic Object Detection ChallengeA CVPR 2019 Workshop – Long ...
2020-04-04 11:11:59
999
翻译 论文翻译:A Mask-RCNN Baseline for Probabilistic Object Detection
A CVPR 2019 Workshop – Long Beach, 17 June 2019论文链接Contributed Talk (2nd place): A Mask-RCNN Baseline for Probabilistic Object Detection. Phil Ammirato, Alexander C. Berg.搜狗翻译+人工校准时间仓促,比较粗糙,欢迎指出不足...
2020-04-03 10:36:52
440
Uncertainty.rar
2020-04-07
python源代码学习实验专题.rar
2019-11-26
advanced_detect.zip
2019-07-01
C和C++课程设计源代码.zip
2019-06-07
windows进程相关小程序
2019-05-06
自然语言处理课程实验部分参考代码
2019-04-14
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人