题目:请从字符串中找出一个最长的不包含重复字符的子字符串,计算该最长子字符串的长度。
示例 1:
输入: “abcabcbb”
输出: 3
解释: 因为无重复字符的最长子串是 “abc”,所以其长度为 3。
思路:用map存储当前位置的元素和位置,当遇到相同元素时,start更新为map中存储的元素的位置,然后put一下更新map中的新值。后面在遇到相同的就继续更新start为上一次出现的位置,同时将map中的值进行更新。
初始值:start的初始值为-1。需要注意的是,更新start的值时,需要取最大的那个值进行更新
class Solution {
public int lengthOfLongestSubstring(String s) {
HashMap<Character,Integer> map =new HashMap<>();
int start = -1;//起始位置,当遇见一样的就更新到新的位置
int res=0;
for(int i=0;i<s.length();i++){
if(map.containsKey(s.charAt(i))){
start = Math.max(start,map.get(s.charAt(i)));//i要取大的,防止取小的之后后面有相同的
}
map.put(s.charAt(i),i);
res = Math.max(res,i-start);
}
return res;
}
}
方法二:动态规划+map
class Solution {
public int lengthOfLongestSubstring(String s) {
Map<Character, Integer> dic = new HashMap<>();
int res = 0, tmp = 0;
for(int j = 0; j < s.length(); j++) {
int i = dic.getOrDefault(s.charAt(j), -1); // 获取索引 i
dic.put(s.charAt(j), j); // 更新哈希表
tmp = tmp < j - i ? tmp + 1 : j - i; // dp[j - 1] -> dp[j]
res = Math.max(res, tmp); // max(dp[j - 1], dp[j])
}
return res;
}
}
如果第i个字符之前没有出现过,那么dp[i] = dp[i-1] + 1。
如果第i个字符之前出现过,那么情况就要复杂一些了:第i个字符和它上次出现在字符串中的位置的距离,记为d,接下来分两种情况讨论:
(1)d小于或等于dp[i-1],此时第i个字符上次出现在f(i-1)对应的字符串中,因此,dp[i]=d;比如"arabcacfr"这个字符串,dp[1]=2,计算dp[2],即以下标为2的字符’a’为结尾的不含重复字符的子字符串的最长长度,我们注意到他在下标0的为位置出现过,所以d为2,此时dp[2]=2.
(2)d大于dp[i-1]时,此时有dp[i]=dp[i-1]+1;比如上面那个字符串的最后一个‘r’为结尾的最长不包重复字符串的子字符串的长度,它的前一个字符’f’的最长不包含重复字符的子字符串为“acf”,因此dp[7] =3;我们注意到’r’字符在前面下标1的位置出现过,因此d为7,说明字符‘r’不包含在dp[7]对应的最长不重复字符串"acf“中,此时,把字符‘r’拼接到“acf”的后面也不会出现重复字符,因此dp[8]=dp[7]+1;
class Solution {
public int lengthOfLongestSubstring(String s) {
Map<Character, Integer> dic = new HashMap<>();
int res = 0, tmp = 0;
for(int j = 0; j < s.length(); j++) {
int i = dic.getOrDefault(s.charAt(j), -1); // 获取索引 i
dic.put(s.charAt(j), j); // 更新哈希表
tmp = tmp < j - i ? tmp + 1 : j - i; // dp[j - 1] -> dp[j]
res = Math.max(res, tmp); // max(dp[j - 1], dp[j])
}
return res;
}
}