深度学习
本三儿
假装啥也知道
展开
-
从如“何看待人工智能“”开始
相信大部分的读者跟我一样,是从2016年3月开始,一个叫阿尔法狗的玩意儿横空出世,才知道世界上有这么一群人,在做这么一件事,叫做人工智能,简称AI。这件事影响重大,我的一个同学居然因为这件事,开始学习了 下!围! 棋!(MD不应该是开始学人工智能嘛...)。对于当时还在读研究生的我来说,其实并没有什么深刻的理解,只是出于一个理工男的好奇心,上网搜索了一些相关的信息,算是有了一个基本的了...原创 2018-08-29 09:22:40 · 843 阅读 · 1 评论 -
一、最简单的神经网络--Bp神经网络
在之前的文章中,有提到过,所谓的 AI 技术,本质上是一种数据处理处理技术,它的强大来自于两方面:1.互联网的发展带来的海量数据信息 2.计算机深度学习算法的快速发展。 所以说 AI 其实并没有什么神秘,只是在算法上更为复杂。要想理解这一点,我们要从一个问题说起:找数据的规律... 如果你是一名上过大学的人,有几个数学上的方法你应该不太陌生:线性拟合,多项式拟合...原创 2018-09-04 20:44:38 · 206772 阅读 · 189 评论 -
二、计算机视觉的基础 -- 卷积神经网络(CNN)
说明:在解析 卷积神经网络(CNN) 之前,这里默认你已经对基本的 Bp神经网络有了比较清楚的理解,如激励函数、学习率、反向传播、梯度下降等基础概念不再进行解释。 在上一篇关于Bp神经网络的文章结尾提到过:受限于Bp网络的结构本身,和粗暴的计算方式,它能够解决的问题是有限的,在图像问题,序列问题上的表现实在是有限。针对图像类的问题,大神们结合图像处理中的卷积化运算,改进了网络...原创 2018-09-10 11:29:11 · 7038 阅读 · 27 评论