系列文章目录
提示:这里可以添加系列文章的所有文章的目录,目录需要自己手动添加
例如:第一章 Python 机器学习入门之pandas的使用
提示:写完文章后,目录可以自动生成,如何生成可参考右边的帮助文档
文章目录
前言
参考链接: https://zhuanlan.zhihu.com/p/28112239
一、为什么需要Stream?
1.外部迭代和内部迭代
使用迭代器或for循环是外部迭代
使用stream时内部迭代
二、流操作
流的操作可以分为两类:处理操作、聚合操作。
1.处理操作
1. filter (过滤)
注意: 参数需实现Predicate predicate接口 -->即一个从T到boolean的函数。
2.map (数据类型转换)
注意: 参数需实现Function接口(lambda表达式)
3. flatMap(提取子流)
例如: 对于List<List>结构的数据 , 可以把第二层级的所有String 都提取出来.
List<List<String>> lists = new ArrayList<>();
lists.add(Arrays.asList("apple", "click"));
lists.add(Arrays.asList("boss", "dig", "qq", "vivo"));
lists.add(Arrays.asList("c#", "biezhi"));
逻辑: 获取这些数据中长度大于2的单词个数
lists.stream()
.flatMap(Collection::stream)
.filter(str -> str.length() > 2)
.count();
4. max和min (参数需实现Comparator接口)
重点: 用什么作为排序的指标
Property property = properties.stream()
.max(Comparator.comparingInt(p -> p.priceLevel))
.get();
2.收集结果
1. 获取距离我最近的2个店铺
List<Property> properties = properties.stream()
.sorted(Comparator.comparingInt(x -> x.distance))
.limit(2)
.collect(Collectors.toList());
三、并行数据处理
1. Stream并行流
与串行的区别只是在于: parallelStream 和 stream 方法的区别:
properties.parallelStream()
.filter(p -> p.priceLevel < 4)
.sorted(Comparator.comparingInt(Property::getDistance))
.map(Property::getName)
.limit(2)
.collect(Collectors.toList());
2. 先要问自己一个问题:并行化运行基于流的代码是否比串行化运行更快?
总结
人丑就要多读书 , 哈哈