- 博客(4)
- 收藏
- 关注
原创 关键迭代-学习笔记
假设检验通常假定实验组和对照组之间的指标没有差异(零假设),如果数据能提供有力的反对证据,则拒绝该假设。仅仅由于指标不是统计显著的,不能假设没有实验效应。真实的情况可能是因为实验的统计功效不足。参考https://zhuanlan.zhihu.com/p/147702690什么是统计功效?统计功效 = 1-β,即不犯第二类错误的概率。第二类错误:零假设是错误的,但我们接受了它。怎么计算统计功效?
2023-12-03 17:19:29 96 1
原创 PRML笔记(六)Kernel Methods
6 Kernel Method一般的线性回归、线性分类等线性模型和神经网络等非线性模型都是从训练集中学习参数www的点估计或后验分布,在预测过程中不再用到训练集;有一类叫memory-based method的方法,在预测过程中也使用了训练集或其部分子集的信息,比如最近邻分类。这类方法一般需要一个相似矩阵来度量两个向量之间的距离,且在训练阶段比较快,而预测阶段比较慢。很多的线性模型可以被重塑为一...
2019-11-18 10:14:27 275
原创 PRML笔记(三)Linear Models for Regression
回归问题的目标是给定D维向量x\textbf{x}x作为输入变量,预测一个或多个连续的目标变量ttt。
2019-11-17 21:00:25 123
原创 PRML笔记(一)Introduction
1.3 Model Selection多项式模型的参数个数控制着模型的复杂度;加入正则项的最小二乘模型,λ\lambdaλ控制了模型的复杂度。我们需要找到这类控制模型复杂度的参数的最佳取值来得到泛化能力最好的模型,或者在几类不同的模型中找到最佳模型。training set, validation set, testing set.cross-validation, leave-one-ou...
2019-11-09 18:05:34 278 1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人