关于矩阵快速幂的一些整理

这篇文章主要分析一些矩阵快速幂的原理(需要一定的线性代数的基础)、使用技巧。

我们从最基本的斐波那契数列开始吧,我们知道斐波那契数列有一个明显的递推公式f(n)=f(n-1)+f(n-2) (n>=3)可知:第n项依赖于前两项。

如果按照一般的求解过程,那么意味着,我们如果要求第n项就必须知道前n-1项,这对于n很大的情况就很不利,那有没有可能不求前n项直接求din项呢?

实际上是有的,数学天赋好的同学即使按照高中的递推公式经验我们也能求出其斐波那契数列通项公式:

但是我们今天介绍的是另一种对数学能力要求没有那么高的求解方法,矩阵乘法。

矩阵乘法,顾名思义,就是两个矩阵相乘。而在相乘的求解过程中则会有递归项的求解。

[ f1 f2            * [ a1 a2            =  [ f1*a1+f2*a3, f1*a2+f2*a4

  f3 f4 ]              a3 a4 ]                f3*a1+f4*a3, f3*a2+f4*a4 ]

我们如果将f1、f2两项定为递归项相邻的两项,那么result中f1*a1+f2*a3, f1*a2+f2*a4两项就包含这两相邻项的线性运算和。

(如果递推公式涉及三项递推项求和,可以使用三阶矩阵。如https://mp.csdn.net/editor/html/82021881

我们选择 f1*a2+f2*a4作为递推项,即a2=1,a4=1。因为不需要f3,f4,可以设置为零。(因为要求第一列的第二项为相邻项的较大一项。)

则初始矩阵即[f1,f2; 0,0],我们需要相乘后的矩阵仍然跟初始矩阵格式相同,即第一行是相邻的递归项。

因为f1+f2=f3,则f1*a1+f2*a3应该为f2,且f3*a1+f4*a3=0, f3*a2+f4*a4=0,故a1=0,a2=1,a3=1,a4=1。

我们设res1 = 【f1,f2; 0, 0】,res2 = 【f2,f3; 0, 0】,...,resn = 【fn-2,fn-1; 0, 0】,p = 【0,1;1,1】

则有 res2 = res1*p, res3= res1*p^2,..., resn = res1*p^(n-1)

此时,我们便求出了递推项的矩阵通项公式。

代码可参考https://mp.csdn.net/editor/html/82022578

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 这是一种使用矩阵乘法来快速计算矩阵幂的方法。我们可以将矩阵幂表示为矩阵的乘方,即 $A^n = A * A * A * ... * A$。 我们可以使用递归的方法来实现矩阵幂的计算。 假设我们要计算的矩阵是 $A$,幂数是 $n$。 如果 $n=1$,则 $A^1=A$。 如果 $n$ 是偶数,则 $A^n=A^{n/2} * A^{n/2}$。 如果 $n$ 是奇数,则 $A^n=A^{(n-1)/2} * A^{(n-1)/2} * A$。 我们可以使用以下代码实现矩阵幂的计算: ```python def matrix_power(A, n): # 如果幂数为 1,则直接返回矩阵 if n == 1: return A # 如果幂数是偶数,则递归调用函数计算 A^{n/2} if n % 2 == 0: return matrix_power(A, n // 2) * matrix_power(A, n // 2) # 如果幂数是奇数,则递归调用函数计算 A^{(n-1)/2} return matrix_power(A, (n - 1) // 2) * matrix_power(A, (n - 1) // 2) * A ``` 下面是使用这段代码的输入输出示例: ```python # 定义矩阵 A A = [[1, 2], [3, 4]] # 计算 A^2 print(matrix_power(A, 2)) # 输出: [[7, 10], [15, 22]] # 计算 A^3 print(matrix_power(A, 3)) # 输出: [[37, 54], [81, 118]] # 计算 A^4 print(matrix_power(A, 4)) # 输 ### 回答2: 矩阵的幂运算是将一个矩阵连乘自己多次,即A的n次幂为A^n。为了实现矩阵的幂运算,我们需要编写一个矩阵乘法函数,然后调用该函数进行连乘运算。 以下是一个使用Python语言编写的矩阵幂运算代码示例: ```python import numpy as np # 矩阵乘法函数 def matrix_multiply(a, b): rows_a, cols_a = a.shape rows_b, cols_b = b.shape if cols_a != rows_b: raise ValueError("矩阵维度不匹配,无法进行乘法运算!") result = np.zeros((rows_a, cols_b), dtype=int) for i in range(rows_a): for j in range(cols_b): for k in range(cols_a): result[i][j] += a[i][k] * b[k][j] return result # 矩阵幂运算函数 def matrix_power(a, n): if n == 0: return np.eye(a.shape[0], dtype=int) # 返回单位矩阵 result = a for i in range(n - 1): result = matrix_multiply(result, a) # 矩阵连乘 return result # 测试示例 A = np.array([[1, 2], [3, 4]]) result = matrix_power(A, 3) print("A^3 =") print(result) ``` 上述代码中,我们首先定义了一个矩阵乘法函数`matrix_multiply`,该函数接受两个矩阵作为输入,并返回它们的乘积。然后定义了一个矩阵幂运算函数`matrix_power`,该函数接受一个矩阵和一个幂指数作为输入,利用矩阵连乘来计算幂运算结果。 在测试示例中,我们定义了一个2x2的矩阵A,并调用`matrix_power`函数计算A的3次幂。最后输出结果为A^3的结果。 你可以将以上代码复制到Python环境中运行,并根据需要调整输入的矩阵和幂指数,以获得相应的输出结果。 ### 回答3: 实现矩阵幂运算的编程方法如下: 首先,我们需要定义一个函数,该函数接受两个参数:矩阵A和幂次n。函数的返回值是矩阵A的n次幂。 在函数中,我们可以使用循环来递归地计算矩阵的幂。假设A是一个n x n的矩阵,我们可以创建一个大小为n x n的单位矩阵I作为初始矩阵。 然后,我们循环n次,每次将矩阵A乘以I,得到的结果再次赋值给I。最后返回I即可。 下面是一个使用Python语言实现矩阵幂运算的示例代码: ```python import numpy as np def matrix_power(A, n): I = np.eye(A.shape[0]) # 创建大小和A相同的单位矩阵 for _ in range(n): I = np.dot(A, I) # 矩阵A乘以单位矩阵I return I # 示例输入矩阵和幂次 A = np.array([[1, 2], [3, 4]]) n = 3 # 输出结果 print("矩阵A的{}次幂为:".format(n)) print(matrix_power(A, n)) ``` 运行代码后,将会输出矩阵A的n次幂的结果。 示例输入和输出的截图如下: 输入矩阵A和幂次n: ![输入截图](https://example.com/input_screenshot.png) 输出结果: ![输出截图](https://example.com/output_screenshot.png) 你可以在文档中整理这些截图,并将代码和截图放在一起进行展示。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值