2019美赛b题:基于Weighted-K-means聚类模型的选址

本文介绍了博主在2019年美赛B题中使用Weighted-K-means聚类模型解决选址问题的过程。首先确定了所需选址的数量,然后详细解释了k-means聚类模型,接着引入了Weighted-K-means模型以适应不同城市的需求权重。通过Matlab实现并得到了选址结果,展示了算法在实际问题中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

基于Weighted-K-means聚类模型的选址

(本博客为博主参加2019美赛B题中解决选址问题而使用的算法模型。文字图片皆为原创,引用请注明出处,切勿全篇抄袭。代码已经经过调试,结果正常,如有疑问欢迎留言)

这里贴出题目的要求,感兴趣的同学可以到网上下载2019美赛B题观看
请考虑背景信息,问题陈述中确定的要求以及问题附件中提供的信息,以解决以下问题。
A.为HELP,Inc。DroneGo灾难响应系统推荐无人机机队和一套医疗包,以满足波多黎各飓风情景的要求。为最多三个ISO货物集装箱中的每一个设计相关的包装配置,以将系统运输到波多黎各。

B.确定波多黎各的最佳位置或位置,以定位DroneGo灾难响应系统的一个,两个或三个货物集装箱,以便能够进行医疗供应交付和道路网络的视频侦察。

C.对于DroneGo舰队中包含的每种类型的无人机:
提供无人机有效载荷包装配置(即包装在无人机货舱中的医疗包装),运送路线和时间表,以满足波多黎各飓风情景的已确定的紧急医疗包装要求。提供无人机飞行计划,使DroneGo车队能够使用车载摄像机评估支持Help,Inc。任务的主要高速公路和道路。

工作开始

**说明:在选址模型之前我们小队还自己建了空间分布最优选择模型,主要是通过理论计算,以达到最大服务能力作为出发点,确定工作方案,即将无人机分为两类,一类用于送医疗包,叫做送货无人机(Delivery drone),一类用于拍摄主要道路,叫做航拍无人机(Aerial drone)。 根据医院需求和题目的各种约束,确定送货飞机的类型及数量。

接下来就是第二个棘手的问题啦,选址问题

1、选址数量的确定

(利用最大极限服务范围MLS和波多黎各领土面积PS的比值算出最小ISO数量minNiso,知道了要用三个集装箱)

在上述模型4.1中,我们知道了将无人机分成两类,并算出了完成每个医院送医疗包任务的无人机类型。对于每一套系统,定义了最大极限服务范围MLS来描述它的极限服务范围,考虑无人机往返程,能被表达为:
MLS=pi*(FFD/2)^2
FFD代表无人机最大飞行距离(Farthest flight distance),
参考题目中无人机类型性能,能表达为FFD=MAX(ViFTi)= V2FT2

对于波多黎各,她的地图能近似为一个长方形,其面积可用如下公式表示PS=PL*PW,其中PL,PW分别是波多黎各领土的长和宽,在goolge地图上能得到数值。

因此,最小ISO数量为minNiso=S/MLS=4.192
此数值的得到假设了各个ISO服务范围不重叠情况下,还要再考虑了要给特定位置的医院进行送货,所以此数值还得更大些。

HELP inc最多能给我们提供三个Standard ISO Container Dimensions 用来装包括医疗包、无人机整一套系统,所以我们选用三个ISO,即选出三个地址作为无人机求援系统根据地。minNiso=4.192>3,此不等式也提示着我们这三个系统对于满足整个波多黎各的需求还是不够的,所以我们可以做出些适当的取舍。

2、k-means聚类模型介绍

它是数据点到原型的某种距离作为优化的目标函数,利用函数求极值的方法得到迭代运算的调整规则。K-means算法以欧式距离作为相似度测度,它是求对应某一初始聚类中心向量MC最优分类,使得评价指标D最小。算法采用误差平方和准则函数作为聚类准则函数。最终使得获得的聚类满足同一聚类中的对象相似度较高,聚类中心以及分配给它们的对象就代表一个聚类。核心公式如下:

评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值