- 博客(4)
- 收藏
- 关注
原创 tf.where()【能懂版】
用法1:tf.where(x, y, z)首先要求 x,y,z 的形状相同,返回的结果 res 也与它们形状相同,其中 x 是条件矩阵(数据类型为 tf.bool 的 tensor):若 x(i, j) 为 True,则 res(i, j) = y(i, j)若 x(i, j) 为 False,则 res(i, j) = z(i, j)用法2:tf.where(x)当 y 和 z 都为 None 时得到这种情况,其中 x 是条件矩阵(数据类型为 tf.bool 的 tensor),tf.wh
2021-09-06 21:38:15 924 2
原创 Anaconda 安装 TensorFolw 2.x
1.以管理员身份打开 Anaconda Prompt看其它博客说要以管理员身份打开,未验证非管理员身份打开会怎么样2.查看虚拟环境conda info --envs相关虚拟环境命令参考(下面的操作也会用到这里的命令)3.创建虚拟环境conda create --name tf24 python=3.8tf24 是自定义虚拟环境名称指定 python 版本为 3.8(注意python3.8要求tensorflow最低版本为 2.2 ,官网有说明)4.确认新建虚拟环境成功conda
2021-02-04 16:58:34 244
原创 Spark 将DataFrame的数据写入Hive分区表
方法1用 insertInto该方法按照 df 中字段顺序确定字段与分区字段,与 df 的列名无关mode(“overwrite”):新数据以覆盖方式写入原有分区(其它分区不受影响)mode(“append”):新数据以追加方式写入原有分区val df: DataFrame = ...// 开启 Hive 表动态分区spark.sql("set hive.exec.dynamic.partition=true")spark.sql("set hive.exec.dynamic.partit
2020-12-25 14:39:12 1868 1
原创 Spark 读取外部配置文件(各种提交模式、使用 typesafe.config)
Spark 读取外部配置文件(各种提交模式、使用 typesafe.config)1.使用 typesafe.config 读取外部配置文件使用 com.typesafe.config 的方式STEP1.导入 typesafe 依赖<dependency> <groupId>com.typesafe</groupId> <artifactId>config</artifactId> <version>R
2020-11-26 23:36:30 4426 2
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人