读《Deep Representation Learning With Full Center Loss for Credit Card Fraud Detection》

69 篇文章 0 订阅
3 篇文章 0 订阅

摘要

从深度神经网络的损失函数方面获取法律交易和欺诈交易的深度特征表示

获得更好的特征可分性和可辨别性,从而提高欺诈检测模型的性能,保持其稳定性。
提出了一种新的损失函数,全中心损失(FCL),它同时考虑了特征之间的距离和角度,从而可以全面监督深度表征学习

1.引言

用机器学习处理信用卡欺诈检测比传统的图像二分类多了两个麻烦:
数据集的类不平衡和用户和欺诈者[2],[8]行为的动态变化。

一方面,可用的欺诈交易记录数量非常少,严重影响了监督分类的性能[9]。当前也有解决思路,如基于采样的方法[9,10,17,18]和基于成本的方法[11,19]。

另一方面,欺诈者绞尽脑汁探索新的欺诈策略“仿真”。不过虽然骗子试图表现得像真正的持卡人,但他们没有办法知道持卡人真正的消费习惯,而且会把钱转移到其他账户。因此,这些不同的交易活动导致了欺诈和真实交易数据之间有不同特征。
欺诈策略可能会改变,但欺诈者的目的永远不会改变。因此,即使欺诈策略经常发生改变,提取能够稳定区分欺诈交易和真实交易的有效陈述也是非常重要的。

本文的目的是学习交易行为的有效表示,既能提高欺诈检测的性能,又能保持性能的稳定性。

文献[12]提到,一种表示学习方法是学习数据的表示,它在构建分类器或其他预测器时可以很容易地提取有用的信息。
表示学习如行人重识别[13]和人脸识别[14]等已被广泛应用。

将交易的原始特征映射到深度表示,以准确识别欺诈交易。
学习到的深度表示应该同时最大限度地扩大类间距缩小类内矩。于是构建一个新的全中心损失函数(FCL),集成了优化目标的两个不同方面。
第一个方面是关于深度表示与类中心之间的距离,称为距离中心损失(DCL)。DCL可以强调类内矩
第二个方面是优化的软最大损失(SL),扩大不同类样本深度表示的类间距。

由于SL可以改变学习表示的角分布[15],又可将优化的SL称为角中心损失(ACL)。

2.相关

A.

一些研究将数据动态变化问题视为概念漂移(类似于对齐问题提出的原因吗?)[5,24]。它们主要关注于及时检测概念漂移的出现和自适应地更新分类器,以适应新的概念。

B.深度监督表示学习

是要学习给定数据的一种表示,它使这种新的表示捕获更有用的信息,可用于构建更好的分类器或预测器[12]。

—————————————————

除了网络架构外,损失函数是另一个关键因素,它直接决定了表示学习模型可以实现什么。
根据损失计算所需的实例数,损失函数大致可分为三种:基于个体样本的SL函数[32]-[35]、基于样本对的对比损失函数[36]、[37]和基于三元样本的三元损失函数[38]-[40]。

然而,对于一些具有大数据集的任务来说,硬挖掘三元样本太耗时了,并面临着dramatic data expansion问题

因此有[39]引入了batch-hard-based的三元损失。它可以从每个训练批中生成hard negativehard positive样本对。
此外,[40]提出了一个三元中心损失,可以使学习到的表示更接近相应的类中心,也更远离其他类中心。

对比损失[36]是为了最小化正样本对的距离,如果距离不大于某些预设的边缘,则最大化负样本对的距离。

就像三元损失一样,对比损失也受到准备样本对的耗时问题。

[15]提出了一个中心损失来处理这个问题。中心损失为每个类的深度表示学习一个中心,并将学习到的表示与其相应的类中心之间的距离最小化。
虽然可以减少准备样本对的时间复杂性,但对比损失不能直接应用于分类任务,因为它只能监督模型来学习判别表征(相似性?)。因此,它经常与SL结合作为辅助目标来学习可分离和判别表示[15],[37]。

SL因其简单性和有效性而被广泛应用于深度表示学习方法中。
然而,最近的[32]-[34]表明,传统的SL对缩小类内矩是无效的(这么基准的要求都做不到吗?)
为了解决这个问题,[15],[37]直接将对比损失与它结合起来。
其他研究则集中于提高其辨别能力,以及设计学习表示和目标之间不同形式的角边缘(?)。
[32]提出了一个考察角度相似度的 SL(LMSL),得到在这些学习到的深度表示之间可能具有更大的角可分性。
SL(ASL)[33]直接优化角度。这可以学习那些具有角边缘的角度分布的表示。
[34]提出了一个直接使用不同类的余弦边际的大边际余弦损失(LMCL)。这可以改善与余弦相关的判别信息。
[35]提出了一种加性角边损失(AAML),该方法采用弧弦函数来计算学习到的表示与目标权重之间的角,从而在归一化超球从角到弧的精确对应下优化测地线距离边缘。

然而,如何通过SL提高学习表示的可分离性尚未得到充分的探索。
因此,为了解决这个问题,本文提出了一种新的ACL,一种改进的SL函数。它可以使不同类的学习表示以相反的方向分离。因此,它可以直接得到学习表示的最优可分性。

4.损失函数

FCL
在这里插入图片描述

A.角度中心损失(ACL)

理想的深度特性应该尽可能扩大类间距缩小类内矩。
虽然普通CNN模型的SL非常简单,在许多分类应用中表现得很好,但要生成判别特征并不太有效。

原始SL学习到的特征具有固有的角分布[33]。如果一个输入的深度表示fi有标签yi,那么深度表示fi的原始SL可以重新表述如下:
在这里插入图片描述
设计两个约束条件保持实例从不同类中的角度可分性。
根据[33]中修改后的SL,保证SL的值仅仅依赖于深度表示fi的范数值和Wj和fi之间的夹角。因此,深度特征向量fi的修改SL可以写为
在这里插入图片描述
为了获得稳定的分类性能,从不同类中学习到的实例的深度表示应尽可能充分地保持可分离性。然而,修改后的SL只能直接最小化fi与其相应的Wyi之间的角度。
因此,设计了另一个更强的约束条件
在这里插入图片描述

B.距离中心损失(DCL)

DCL主要负责从不同类中学习到的深度表示的可分离性。对于类内矩采用了欧式空间中的中心损失[15],可以通过从一个实例到相应中心的距离来测量。深度表示fi的中心损失可以表述如下:
在这里插入图片描述
根据标准随机梯度下降(SGD)[15]要求修改
在这里插入图片描述

6.结论

本文还总结了不少最先进的损失函数

改进空间例如,欺诈检测模型的性能稳定性也应该从概念漂移[5],[24]的角度来考虑。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值