大模型量化3

本文探讨了8位浮点数在深度学习中的应用,特别是FP8格式的E4M3和E5M2,适合前向和反向计算。介绍了FP4、QLoRA和双量化技术,以及在GPU上的4位量化训练。强调了PEFT在4/8位模型训练中的作用,并展望了在RLHF中使用量化模型的潜力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

https://huggingface.co/blog/4bit-transformers-bitsandbytes

1.  8 位float 

The FP8 (floating point 8) format has been first introduced in the paper “FP8 for Deep Learning” with two different FP8 encodings: E4M3 (4-bit exponent and 3-bit mantissa) and E5M2 (5-bit exponent and 2-bit mantissa).

 The potential floating points that can be represented in the E4M3 format are in the range -448 to 448, whereas in the E5M2 format, as the number of bits of the e

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

15122306087

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值