脑电特征

1.renyi entropy

       https://www.cnblogs.com/yifdu25/p/8279145.html



2.关联维(Correlation Dimension)

     http://blog.sina.com.cn/s/blog_6276ec790100srmn.html


3.Co复杂度

        http://www.docin.com/p-1181450231.html



您好!对于脑电特征提取,您可以通过MATLAB来进行实现。以下是一些常用的方法和代码示例: 1. 时域特征提取: - 平均功率谱密度(PSD):使用pwelch函数计算信号的功率谱密度。 ```matlab [pxx, f] = pwelch(eeg_signal, window, overlap, nfft, fs); mean_power = mean(pxx); ``` - 平均绝对值(MAV):计算信号的绝对值平均。 ```matlab mav = mean(abs(eeg_signal)); ``` 2. 频域特征提取: - 特定频带上的能量:选择感兴趣的频带,计算该频带内的信号能量。 ```matlab freq_band = [low_freq high_freq]; freq_indices = find(f >= freq_band(1) & f <= freq_band(2)); energy = sum(pxx(freq_indices)); ``` - 脑电节律频带的能量比例:计算不同节律频带(如δ、θ、α、β、γ等)的能量比例。 ```matlab delta_indices = find(f >= 0.5 & f <= 4); theta_indices = find(f >= 4 & f <= 8); alpha_indices = find(f >= 8 & f <= 13); beta_indices = find(f >= 13 & f <= 30); gamma_indices = find(f >= 30 & f <= 100); delta_power = sum(pxx(delta_indices)); theta_power = sum(pxx(theta_indices)); alpha_power = sum(pxx(alpha_indices)); beta_power = sum(pxx(beta_indices)); gamma_power = sum(pxx(gamma_indices)); total_power = delta_power + theta_power + alpha_power + beta_power + gamma_power; delta_ratio = delta_power / total_power; theta_ratio = theta_power / total_power; alpha_ratio = alpha_power / total_power; beta_ratio = beta_power / total_power; gamma_ratio = gamma_power / total_power; ``` 3. 时频域特征提取: - 小波变换(Wavelet Transform):使用cwt函数进行小波变换,得到时频域分解的系数。 ```matlab [cfs, frequencies] = cwt(eeg_signal, scales, 'wavelet_name', 'scal2frq'); ``` 这些是一些常用的脑电特征提取方法和示例代码,您可以根据具体需求进行调整和扩展。希望对您有所帮助!如果您还有其他问题,请随时提问。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值