如何测试概率性事件-二项分布置信区间

本文探讨了如何测试概率性事件,特别是接口或方法触发概率的验证。通过二项分布理论,介绍了两种置信区间估计方法:正态分布近似法和Clopper-Pearson精确置信区间法,并通过实际案例说明如何运用这些方法进行概率测试和分析。
摘要由CSDN通过智能技术生成

fengmian

 

前言

日常开发测试可能会遇到这样一种情况,有一个接口或方法概率触发,那么需要多少次抽样落在一个什么区间内,才能断定是否按照设定概率进行呢?

本文将以二项分布作为研究手段,分两种情况求解此类问题的置信区间范围,并结合实际案例进行分析。

 

背景

某一天,测试同学在验证一个接口时遇到了一个问题。

该接口设定为50%概率触发,测试同学写了自动化脚本进行多次调用。

但是问题来了,他并不知道应该调用多少次,然后落在一个什么区间内才算测试通过。

极大的扩大样本容量,然后给一个模糊的范围边界确实能解决这个问题,但是测试同学并不满足于此,他要一个精确的数字

因此我只能满足他任性的要求,提笔拯救测试同学。

 

解题思路

在这种情况下,触发 or 不触发 此类概率问题可以看作一个二项分布,我们的目的在于经过一定量的样本测试之后判断测试出来的概率是否落在置信区间内

 
那么就需要考虑这几种极端情况:

1.概率太小

2.概率太大

3.样本数很小

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值